
1

 Quiz 4

2

 Midterm 2 ADT, Second Chance

type ‘a option =
| None
| Some of ‘a

3

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* 4

Objectives for Today

■ Reminder: We want to turn strings (code) into
computer instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable

instructions (interpret or compile)
■ Last week we started the first step of parsing,

which is lexing those input strings into tokens
■ Today we will finish lexing and move on to the

rest of parsing

* 5

Objectives for Today

■ Reminder: We want to turn strings (code) into
computer instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable

instructions (interpret or compile)
■ Last week we started the first step of parsing,

which is lexing those input strings into tokens
■ Today we will finish lexing and move on to the

rest of parsing

* 6

Objectives for Today

■ Reminder: We want to turn strings (code) into
computer instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable

instructions (interpret or compile)
■ Last week we started the first step of parsing,

which is lexing those input strings into tokens
■ Today we will finish lexing and move on to the

rest of parsing

7

 Questions from last week?

8

 Recap

* 9

Example : using generated file

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
 Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
- : result = String "hi”

 Recap

* 10

Example : using generated file

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
 Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
- : result = String "hi”

What happened to the rest?

 Recap

* 11

Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

 Recap

* 12

Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

 Recap

* 13

Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

 Recap

14

 Fancy Lexing

* 15

Problem

■ How to get lexer to look at more than the first
token at one time?

■ Answer: action has to tell it to – recursive calls
■ Downside: Not what you want to sew this

together with ocamlyacc (parser generator)
■ Side Benefit: can add “state” into lexing
■ Note: already used this with the _ case

Fancy Lexing

* 16

Problem

■ How to get lexer to look at more than the first
token at one time?

■ Answer: action has to tell it to – recursive calls
■ Downside: Not what you want to sew this

together with ocamlyacc (parser generator)
■ Side Benefit: can add “state” into lexing
■ Note: already used this with the _ case

Fancy Lexing

* 17

Problem

■ How to get lexer to look at more than the first
token at one time?

■ Answer: action has to tell it to – recursive calls
■ Downside: Not what you want to sew this

together with ocamlyacc (parser generator)
■ Side Benefit: can add “state” into lexing
■ Note: already used this with the _ case

Fancy Lexing

* 18

Example: Old Version

rule main = parse
 | (digits)'.'digits as f
 { Float (float_of_string f) }
 | digits as n
 { Int (int_of_string n) }
 | letters as s
 { String s }
 | _ { main lexbuf }

Fancy Lexing

* 19

Example: WIP New Version

rule main = parse
 | (digits)'.'digits as f
 { Float (float_of_string f) :: main lexbuf }
 | digits as n
 { Int (int_of_string n) :: main lexbuf }
 | letters as s
 { String s :: main lexbuf }
 | _ { main lexbuf }

Fancy Lexing

* 20

Example: New Version

rule main = parse
 | (digits)'.'digits as f
 { Float (float_of_string f) :: main lexbuf }
 | digits as n
 { Int (int_of_string n) :: main lexbuf }
 | letters as s
 { String s :: main lexbuf }
 | eof { [] }
 | _ { main lexbuf }

Fancy Lexing

* 21

Example Results

hi there 234 5.2
- : result list =

 [String "hi"; String "there"; Int 234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

Fancy Lexing

22

 Questions so far?

Fancy Lexing

* 23

Dealing with Comments (No Nesting)

let open_comment = "(*"
let close_comment = "*)"
rule main = parse
… (* same as last time *)
| open_comment { comment lexbuf }
| eof { [] }
| _ { main lexbuf }
and comment = parse
| close_comment { main lexbuf }
| _ { comment lexbuf }

Fancy Lexing

* 24

Dealing with Comments (No Nesting)

let open_comment = "(*"
let close_comment = "*)"
rule main = parse
… (* same as last time *)
| open_comment { comment lexbuf }
| eof { [] }
| _ { main lexbuf }
and comment = parse
| close_comment { main lexbuf }
| _ { comment lexbuf }

Fancy Lexing

* 25

Dealing with Comments (No Nesting)

let open_comment = "(*"
let close_comment = "*)"
rule main = parse
… (* same as last time *)
| open_comment { comment lexbuf }
| eof { [] }
| _ { main lexbuf }
and comment = parse
| close_comment { main lexbuf }
| _ { comment lexbuf }

Fancy Lexing

* 26

Dealing with Comments (No Nesting)

let open_comment = "(*"
let close_comment = "*)"
rule main = parse
… (* same as last time *)
| open_comment { comment lexbuf }
| eof { [] }
| _ { main lexbuf }
and comment = parse
| close_comment { main lexbuf }
| _ { comment lexbuf }

Fancy Lexing

* 27

Dealing with Comments (No Nesting)

let open_comment = "(*"
let close_comment = "*)"
rule main = parse
… (* same as last time *)
| open_comment { comment lexbuf }
| eof { [] }
| _ { main lexbuf }
and comment = parse
| close_comment { main lexbuf }
| _ { comment lexbuf }

Fancy Lexing

28

 Questions so far?

Fancy Lexing

* 29

Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Fancy Lexing

* 30

Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth + 1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Fancy Lexing

* 31

Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth + 1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Fancy Lexing

* 32

Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth + 1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Fancy Lexing

* 33

Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth + 1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Fancy Lexing

* 34

Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth + 1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Fancy Lexing

* 35

Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth + 1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Fancy Lexing

* 36

Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

Fancy Lexing

37

 Note: No Longer Regular!

Fancy Lexing

38

 Often easier to defer non-regular
 things to the parser generator.

Fancy Lexing

* 39

Problem

■ How to get lexer to look at more than the first
token at one time?

■ Answer: action has to tell it to – recursive calls
■ Downside: Not what you want to sew this

together with ocamlyacc (parser generator)
■ Side Benefit: can add “state” into lexing
■ Note: already used this with the _ case

Fancy Lexing

40

 Questions so far?

41

 Parsing

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

Parsing 42

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

To parse our source
program and get abstract
syntax, we need a
grammar defined in terms
of the kinds of tokens we
get out of our lexer.

Parsing 43

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

To parse our source
program and get abstract
syntax, we need a
grammar defined in terms
of the kinds of tokens we
get out of our lexer.

The output, an abstract
syntax tree, will track not
just categories, but also
structure.

Parsing 44

The output, an abstract
syntax tree, will track not
just categories, but also
structure.

 Binary Operator +

* 45

Lexing and Parsing

Constant 1 Constant 2

Syntax

Parsing

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

To parse our source
program and get abstract
syntax, we need a
grammar defined in terms
of the kinds of tokens we
get out of our lexer.

The output, an abstract
syntax tree, will track not
just categories, but also
structure.

Parsing 46

* 47

Sample Grammar

■ Language: Parenthesized sums of 0’s and 1’s

<Sum> ::= 0
<Sum> ::= 1
<Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)

Parsing

* 48

Sample Grammar

■ Language: Parenthesized sums of 0’s and 1’s

<Sum> ::= 0
<Sum> ::= 1
<Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)

Parsing

49

 Context-Free Grammars

* 50

BNF Grammars

■ A notation for a context-free grammar
■ Start with a set of characters a, b, … (terminals)
■ Add different characters X, Y, … (nonterminals)
■ One special nonterminal S called start symbol
■ BNF rules (aka productions) have form

 X ::= y
where X is any nonterminal and y is a string of
terminals and nonterminals

■ BNF grammar is a set of BNF rules such that
every nonterminal appears on the left of some rule

Context-Free Grammars

* 51

BNF Grammars

■ A notation for a context-free grammar
■ Start with a set of characters a, b, … (terminals)
■ Add different characters X, Y, … (nonterminals)
■ One special nonterminal S called start symbol
■ BNF rules (aka productions) have form

 X ::= y
where X is any nonterminal and y is a string of
terminals and nonterminals

■ BNF grammar is a set of BNF rules such that
every nonterminal appears on the left of some rule

Context-Free Grammars

* 52

BNF Grammars

■ A notation for a context-free grammar
■ Start with a set of characters a, b, … (terminals)
■ Add different characters X, Y, … (nonterminals)
■ One special nonterminal S called start symbol
■ BNF rules (aka productions) have form

 X ::= y
where X is any nonterminal and y is a string of
terminals and nonterminals

■ BNF grammar is a set of BNF rules such that
every nonterminal appears on the left of some rule

Context-Free Grammars

* 53

BNF Grammars

■ A notation for a context-free grammar
■ Start with a set of characters a, b, … (terminals)
■ Add different characters X, Y, … (nonterminals)
■ One special nonterminal S called start symbol
■ BNF rules (aka productions) have form

 X ::= y
where X is any nonterminal and y is a string of
terminals and nonterminals

■ BNF grammar is a set of BNF rules such that
every nonterminal appears on the left of some rule

Context-Free Grammars

* 54

Sample BNF Grammar

■ Terminals: 0 1 + ()
■ Nonterminals: <Sum>
■ Start symbol = <Sum>

<Sum> ::= 0
<Sum> ::= 1
<Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)

Context-Free Grammars

* 55

Sample BNF Grammar

■ Terminals: 0 1 + ()
■ Nonterminals: <Sum>
■ Start symbol = <Sum>

<Sum> ::= 0
<Sum> ::= 1
<Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)

Can be abbreviated as
 <Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Context-Free Grammars

56

 Questions so far?

Context-Free Grammars

* 57

BNF Semantics

■ Question: What does a BNF grammar mean?
■ Answer: The meaning of a BNF grammar is the

set of all strings consisting only of terminals
that can be derived from the Start symbol

■ Question: How do we determine that set?

Context-Free Grammars

* 58

BNF Semantics

■ Question: What does a BNF grammar mean?
■ Answer: The meaning of a BNF grammar is the

set of all strings consisting only of terminals
that can be derived from the Start symbol

■ Question: How do we determine that set?

Context-Free Grammars

* 59

BNF Deriviations

■ Given rules
X ::= yZw and Z ::= v

 we may replace Z by v to say
X => yZw => yvw

■ Sequence of such replacements called derivation
■ Derivation called right-most if always replace the

right-most non-terminal

Context-Free Grammars

* 60

BNF Deriviations

■ Given rules
X ::= yZw and Z ::= v

 we may replace Z by v to say
X => yZw => yvw

■ Sequence of such replacements called derivation
■ Derivation called right-most if always replace the

right-most non-terminal

Context-Free Grammars

* 61

BNF Derivations

Start with the start symbol:

<Sum> =>

Context-Free Grammars

* 62

BNF Derivations

Pick a non-terminal:

<Sum> =>

Context-Free Grammars

* 63

Pick a rule and substitute:
■ <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

Context-Free Grammars

* 64

Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

Context-Free Grammars

* 65

Pick a rule and substitute:
■ <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

Context-Free Grammars

* 66

Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

Context-Free Grammars

* 67

Pick a rule and substitute:
■ <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

Context-Free Grammars

* 68

Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

Context-Free Grammars

* 69

Pick a rule and substitute:
■ <Sum >::= 1

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

Context-Free Grammars

* 70

Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

Context-Free Grammars

* 71

Pick a rule and substitute:
■ <Sum >::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

Context-Free Grammars

* 72

Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

Context-Free Grammars

* 73

Pick a rule and substitute
■ <Sum> ::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) 0
 => (0 + 1) + 0

BNF Derivations

Context-Free Grammars

* 74

(0 + 1) + 0 is generated by the grammar.

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0
 => (0 + 1) + 0

BNF Derivations

Context-Free Grammars

75

 Questions so far?

Context-Free Grammars

* 76

Extended BNF Grammars

■ Alternatives: allow rules of from X ::= y | z
■ Abbreviates X ::= y, X ::= z

■ Options: X ::= y[v]z
■ Abbreviates X ::= yvz, X ::= yz

■ Repetition: X ::= y{v}*z
■ Can be eliminated by adding new nonterminal V

and rules X ::= yz, X ::= yVz, V ::= v, V ::= vV

Context-Free Grammars

* 77

Extended BNF Grammars

■ Alternatives: allow rules of from X ::= y | z
■ Abbreviates X ::= y, X ::= z

■ Options: X ::= y[v]z
■ Abbreviates X ::= yvz, X ::= yz

■ Repetition: X ::= y{v}*z
■ Can be eliminated by adding new nonterminal V

and rules X ::= yz, X ::= yVz, V ::= v, V ::= vV

Context-Free Grammars

* 78

Extended BNF Grammars

■ Alternatives: allow rules of from X ::= y | z
■ Abbreviates X ::= y, X ::= z

■ Options: X ::= y[v]z
■ Abbreviates X ::= yvz, X ::= yz

■ Repetition: X ::= y{v}*z
■ Can be eliminated by adding new nonterminal V

and rules X ::= yz, X ::= yVz, V ::= v, V ::= vV

Context-Free Grammars

79

 Questions?

80

 Next Class: From Tokens to ASTs

Next Class

81

■ EC2 is up
■ WA7 due Thursday
■ MP8 due next Tuesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help

