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    Midterm 2 ADT, Second Chance 

type ‘a option =
| None
| Some of ‘a
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Programming Languages and 
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/ 

Based heavily on slides by Elsa Gunter, which were 
based in part on slides by Mattox Beckman, as updated 
by Vikram Adve and Gul Agha
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Objectives for Today

■ Reminder: We want to turn strings (code) into 
computer instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable 

instructions (interpret or compile)
■ Last week we started the first step of parsing, 

which is lexing those input strings into tokens
■ Today we will finish lexing and move on to the 

rest of parsing
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    Questions from last week?
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    Recap
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Example : using generated file

# #use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
  Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
- : result = String "hi”

            Recap
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Example : using generated file

# #use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
  Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
- : result = String "hi”

What happened to the rest?

            Recap
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Example : using generated file

# let b = Lexing.from_channel stdin;;
# main b;;
hi 673 there
- : result = String "hi"
# main b;;
- : result = Int 673
# main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

            Recap
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    Fancy Lexing
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Problem

■ How to get lexer to look at more than the first 
token at one time?

■ Answer: action has to tell it to – recursive calls
■ Downside: Not what you want to sew this 

together with ocamlyacc (parser generator)
■ Side Benefit: can add “state” into lexing
■ Note: already used this with the _ case

Fancy Lexing
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Example: Old Version

rule main = parse
 | (digits)'.'digits as f  
     { Float (float_of_string f) }
 | digits as n             
     { Int (int_of_string n) }
 | letters as s            
     { String s }
 | _  { main lexbuf }

Fancy Lexing
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Example: WIP New Version

rule main = parse
 | (digits)'.'digits as f  
     { Float (float_of_string f) :: main lexbuf }
 | digits as n             
     { Int (int_of_string n) :: main lexbuf }
 | letters as s            
     { String s :: main lexbuf }
 | _  { main lexbuf }

Fancy Lexing
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Example: New Version

rule main = parse
 | (digits)'.'digits as f  
     { Float (float_of_string f) :: main lexbuf }
 | digits as n             
     { Int (int_of_string n) :: main lexbuf }
 | letters as s            
     { String s :: main lexbuf }
 | eof { [] }
 | _  { main lexbuf }

Fancy Lexing
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Example Results

hi there 234 5.2
- : result list = 

  [String "hi"; String "there"; Int 234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

Fancy Lexing
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    Questions so far?

Fancy Lexing
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Dealing with Comments (No Nesting)

let open_comment = "(*"
let close_comment = "*)"
rule main = parse
… (* same as last time *)
| open_comment { comment lexbuf }
| eof { [] }
| _ { main lexbuf }
and comment = parse
| close_comment { main lexbuf }
| _  { comment lexbuf }

Fancy Lexing
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    Questions so far?

Fancy Lexing
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Dealing with Nested Comments

rule main = parse
…
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse
 | open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf
     else comment (depth - 1) lexbuf }
 | _  { comment depth lexbuf }

Fancy Lexing
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    Note: No Longer Regular!

Fancy Lexing
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    Often easier to defer non-regular 
    things to the parser generator.

Fancy Lexing
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Problem

■ How to get lexer to look at more than the first 
token at one time?

■ Answer: action has to tell it to – recursive calls
■ Downside: Not what you want to sew this 

together with ocamlyacc (parser generator)
■ Side Benefit: can add “state” into lexing
■ Note: already used this with the _ case

Fancy Lexing
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    Questions so far?
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    Parsing



Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser
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Lexing and Parsing

Constant 1 Constant 2

Syntax

Parsing
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Sample Grammar

■ Language: Parenthesized sums of 0’s and 1’s

<Sum> ::= 0 
<Sum> ::= 1 
<Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)

Parsing
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    Context-Free Grammars
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BNF Grammars

■ A notation for a context-free grammar
■ Start with a set of characters a, b, … (terminals)
■ Add different characters X, Y, … (nonterminals)
■ One special nonterminal S called start symbol
■ BNF rules (aka productions) have form

   X ::= y
where X is any nonterminal and y is a string of 
terminals and nonterminals

■ BNF grammar is a set of BNF rules such that 
every nonterminal appears on the left of some rule

Context-Free Grammars
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Sample BNF Grammar

■ Terminals: 0 1 + ( )
■ Nonterminals: <Sum>
■ Start symbol = <Sum>

<Sum> ::= 0 
<Sum> ::= 1 
<Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)

Context-Free Grammars
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Sample BNF Grammar

■ Terminals: 0 1 + ( )
■ Nonterminals: <Sum>
■ Start symbol = <Sum>

<Sum> ::= 0 
<Sum> ::= 1 
<Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)

Can be abbreviated as
 <Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Context-Free Grammars
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    Questions so far?

Context-Free Grammars
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BNF Semantics

■ Question: What does a BNF grammar mean?
■ Answer: The meaning of a BNF grammar is the 

set of all strings consisting only of terminals 
that can be derived from the Start symbol

■ Question: How do we determine that set?

Context-Free Grammars
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BNF Deriviations

■ Given rules 
X ::= yZw and Z ::= v 

   we may replace Z by v to say
X => yZw => yvw 

■ Sequence of such replacements called derivation
■ Derivation called right-most if always replace the 

right-most non-terminal

Context-Free Grammars
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BNF Derivations

Start with the start symbol:

<Sum> =>

Context-Free Grammars
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BNF Derivations

Pick a non-terminal:

<Sum> =>

Context-Free Grammars
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Pick a rule and substitute:
■ <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

Context-Free Grammars
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Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

Context-Free Grammars
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Pick a rule and substitute:
■ <Sum> ::= ( <Sum> )

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>

BNF Derivations

Context-Free Grammars



* 66

Pick a non-terminal:

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>

BNF Derivations

Context-Free Grammars
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Pick a rule and substitute:
■ <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>
            => ( <Sum> + <Sum> ) + <Sum> 

BNF Derivations

Context-Free Grammars
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Pick a non-terminal:

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>
            => ( <Sum> + <Sum> ) + <Sum> 

BNF Derivations

Context-Free Grammars
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Pick a rule and substitute:
■ <Sum >::= 1

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>
            => ( <Sum> + <Sum> ) + <Sum> 
            => ( <Sum> + 1 ) + <Sum>

BNF Derivations

Context-Free Grammars
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Pick a non-terminal:

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>
            => ( <Sum> + <Sum> ) + <Sum> 
            => ( <Sum> + 1 ) + <Sum>

BNF Derivations

Context-Free Grammars
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Pick a rule and substitute:
■ <Sum >::= 0

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>
            => ( <Sum> + <Sum> ) + <Sum> 
            => ( <Sum> + 1 ) + <Sum>
            => ( <Sum> + 1 ) + 0

BNF Derivations

Context-Free Grammars
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Pick a non-terminal:

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>
            => ( <Sum> + <Sum> ) + <Sum> 
            => ( <Sum> + 1 ) + <Sum>
            => ( <Sum> + 1 ) + 0

BNF Derivations

Context-Free Grammars
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Pick a rule and substitute
■ <Sum> ::= 0

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>
            => ( <Sum> + <Sum> ) + <Sum> 
            => ( <Sum> + 1 ) + <Sum>
            => ( <Sum> + 1 ) 0
            => ( 0 + 1 ) + 0

BNF Derivations

Context-Free Grammars
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( 0 + 1 ) + 0  is generated by the grammar.

<Sum> => <Sum> + <Sum >
            => ( <Sum> ) + <Sum>
            => ( <Sum> + <Sum> ) + <Sum> 
            => ( <Sum> + 1 ) + <Sum>
            => ( <Sum> + 1 ) + 0
            => ( 0 + 1 ) + 0

BNF Derivations

Context-Free Grammars
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    Questions so far?

Context-Free Grammars
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Extended BNF Grammars

■ Alternatives: allow rules of from X ::= y | z
■ Abbreviates  X ::= y, X ::= z

■ Options:  X ::= y[v]z
■ Abbreviates X ::= yvz, X ::= yz

■ Repetition: X ::= y{v}*z
■ Can be eliminated by adding new nonterminal V 

and rules X ::= yz, X ::= yVz, V ::= v, V ::= vV

Context-Free Grammars
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    Questions?
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    Next Class: From Tokens to ASTs



Next Class
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■ EC2 is up
■ WA7 due Thursday
■ MP8 due next Tuesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help


