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Objectives for Today
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■ Last class, we covered recursive datatypes, 
emphasizing how they can represent the syntax of 
programs for transformations

■ We also teased mutually recursive and nested 
recursive datatypes

■ Today, we will cover mutually recursive and 
nested recursive datatypes in more detail

■ We will then start talking about types and type 
checking—another very useful thing we need to 
do when writing compilers and interpreters
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    Questions from last week?
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    Mutually Recursive Datatypes
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Mutually Recursive Types

type 'a tree =
  TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
  Last of 'a tree | More of ('a tree * 'a treeList)
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Mutually Recursive Types - Values

TreeNode
  (More (TreeLeaf 5,
    (More
      (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
      Last (TreeLeaf 7))))))

              5                                7

                       3               2

Mutually Recursive Datatypes
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Mutually Recursive Types - Values

TreeNode

More              More           Last 

TreeLeaf       TreeNode            TreeLeaf

    5                More           Last       7

                      TreeLeaf        TreeLeaf

                           3                   2
Mutually Recursive Datatypes
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Mutually Recursive Functions
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Mutually Recursive Functions
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Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 27

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 28

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 29

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 30

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 31

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 32

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 33

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 34

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 35

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 36

Mutually Recursive Functions

let rec fringe tree =
  match tree with 
  | TreeLeaf x -> [x]
  | TreeNode list -> list_fringe list
and list_fringe tree_list =
  match tree_list with
  | Last tree -> fringe tree
  | More (tree, list) ->
      (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes



* 37

Mutually Recursive Functions

              5                                7

                      3                2

# let tree = TreeNode
   (More (TreeLeaf 5,
     (More
       (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
       Last (TreeLeaf 7)))))
   in fringe tree;;
- : int list = [5; 3; 2; 7]

Mutually Recursive Datatypes
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    Questions so far?
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    Nested Recursive Datatypes
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Nested Recursive Types

(* Alt. def, allowing empty lists & values anywhere *)
type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree list);;

 Nested Recursive Datatypes
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Nested Recursive Types - Values

(* Alt. def, allowing empty lists & values anywhere *)
type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree list);;

TreeNode
  (5,
    [TreeNode (3, []); 
     TreeNode
       (2, [TreeNode (1, []); TreeNode (7, [])]);
     TreeNode (5, [])])

 Nested Recursive Datatypes
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Nested Recursive Types - Values

(* A simpler definition, allowing empty lists *)
type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree list);;

TreeNode
  (5,
    [TreeNode (3, []); 
     TreeNode
       (2, [TreeNode (1, []); TreeNode (7, [])]);
     TreeNode (5, [])])

5

3           2           5

1           7

 Nested Recursive Datatypes
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Nested Recursive Types - Values

ltree =  TreeNode(5)

          ::                ::                 ::           [ ]

TreeNode(3)   TreeNode(2)   TreeNode(5)

      [ ]             ::             ::    [ ]        [ ]   

                 TreeNode(1)  TreeNode(7)

                       [ ]              [ ]

 Nested Recursive Datatypes
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Mutually Recursive Functions

let rec flatten_tree labtree =
  match labtree with
  | TreeNode (x, ts) -> x :: flatten_tree_list ts
and flatten_tree_list ts =
  match ts with 
  | [] -> []
  | labtree :: labtrees ->
    flatten_tree labtree @ flatten_tree_list labtrees

 Nested Recursive Datatypes
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Mutually Recursive Functions

let rec flatten_tree labtree =
  match labtree with
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 Nested Recursive Datatypes

Can get around 
if clever, but 
nontrivial.
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Mutually Recursive Functions

let rec flatten_tree labtree =
  match labtree with
  | TreeNode (x, ts) -> x :: flatten_tree_list ts
and flatten_tree_list ts =
  match ts with 
  | [] -> []
  | labtree :: labtrees ->
    flatten_tree labtree @ flatten_tree_list labtrees

Nested recursive types lead to 
mutually recursive functions!

 Nested Recursive Datatypes

And we need 
polymorphism 
to work around!
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    Questions so far?
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    Types and Type Checking
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Why Types?

■ Types play a key role in:
■ Data abstraction in the design of programs

■ Keeping track of important information for you
■ Abstracting away irrelevant details

■ Type checking in the analysis of programs
■ e.g., ruling out entire classes of bugs

■ Compile-time code generation in the 
translation and execution of programs
■ Data layout (how many words; which are data 

and which are pointers) dictated by type
      Types and Type Checking
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No Really, Why Types?

■ https://www.destroyallsoftware.com/talks/wat 

      Types and Type Checking

https://www.destroyallsoftware.com/talks/wat
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Terminology

■ Type: A type T defines possible data values
■ For the sake of this class, it’s enough to imagine 

it as being a set of possible data values
■ e.g., short in C is {x | 215 - 1 ≥ x ≥ -215}
■ A value (or term) in this set is said to have type T

■ Type system: rules of a language assigning types 
to expressions
■ One can view a type system as ruling out 

possibly “bad” expressions in a language
■ Deeply and beautifully connected to logics

      Types and Type Checking
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Types as Specifications

■ Types describe properties of programs
■ Different type systems describe different 

properties, e.g.,
■ Data is read-write versus read-only
■ Operation has authority to access data
■ Data came from “right” source

■ With fancy types, can prove theorems by writing 
programs whose types represent those theorems

■ Common type systems focus on types 
describing same data layout and access properties

      Types and Type Checking
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Sound Type System

■ A type system is sound if in that system, whenever 
an expression is assigned type T, and it evaluates to 
value v, then v is in the set of values defined by T

■ Informally, if the type checker says a term has a 
given type, then when you actually run the program 
it’s going to have that type still, no matter what 
weird thing you do to the term

■ OCaml, Scheme, and Rust have sound type systems
■ Most implementations of C and C++ do not 

      Types and Type Checking
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Strongly Typed Language

■ When no application of an operator to arguments 
can lead to a runtime type error, the language is 
said to be strongly typed
■ Eg: 1 + 2.3;;

■ What this actually implies depends on the definition 
of “type error,” which varies by language

      Types and Type Checking
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Strongly Typed Language

■ C++ claimed to be “strongly typed”, but 
■ Union types allow creating a value at one type 

and using it at another
■ Type coercions  may cause unexpected 

(undesirable) effects
■ No array bounds check (in fact, no runtime 

checks at all)
■ SML, OCaml “strongly typed” but still must do 

dynamic array bounds checks, runtime type case 
analysis, and other checks

■ Coq, Lean, Agda, Idris can do really fancy checks
      Types and Type Checking



* 58

Static vs. Dynamic Types

• Static type: type assigned to an expression at 
compile time

• Dynamic type: type assigned to a storage 
location at run time

• Statically typed language: static type assigned 
to every expression at compile time

• Dynamically typed language: type of an 
expression determined at run time

• Gradually typed language: continuum of 
languages between dynamic and static typing

      Types and Type Checking
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Static vs. Dynamic Types

• Static type: type assigned to an expression at 
compile time

• Dynamic type: type assigned to a storage 
location at run time

• Statically typed language: static type assigned 
to every expression at compile time

• Dynamically typed language: type of an 
expression determined at run time

• Gradually typed language: continuum of 
languages between dynamic and static typing

Gradual types are not 
explicitly covered in class

      Types and Type Checking
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Type Checking

■ When is op(arg1 , … , argn) allowed?
■ Type checking assures operations are applied to 

the right number of arguments of the right types
■ “Right type” may mean same type as was 

specified, or may mean that there is a 
predefined implicit coercion that will be applied

■ Used to resolve overloaded operations

      Types and Type Checking
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Type Declarations & Type Inference

■ Type declarations: explicit assignment of types to 
terms in source code
■ Must be checked in a strongly typed language
■ Often not necessary for strong typing or even 

static typing (depends on the type system)
■ Type inference: a program analysis to assign a 

type to a term in its context
■ Fully static type inference first introduced by 

Robin Miller in ML
■ Haskell, OCaml, SML all use type inference

■ Records are a problem for type inference
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    Questions so far?
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    Types and Type Checking
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Type Checking

■ When is op(arg1 , … , argn) allowed?
■ Type checking assures operations are applied to 
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specified, or may mean that there is a 
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■ Used to resolve overloaded operations
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Type Checking

■ Type checking may be done statically at compile 
time or dynamically at run time

■ Dynamically typed languages (e.g., LISP, Prolog) do 
only dynamic type checking

■ Statically typed languages can do most type 
checking statically

■ Real life does not like binary discrete categories of 
things so much (consider Python with mypy)

      Types and Type Checking
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Dynamic Type Checking

■ Dynamic type checking is performed at run-time 
before each operation is applied

■ Types of variables and operations left unspecified 
until run-time
■  Same variable may be used at different types

■ Data object must contain type information
■ Errors aren’t detected until violating application is 

executed (maybe years after the code was written)

      Types and Type Checking
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Static Type Checking

■ Static type checking is performed after parsing, 
before code generation

■ Type of every variable and signature of every 
operator must be known at compile time

■ Can eliminate need to store type information in 
data object if no dynamic type checking is needed

■ Catches many programming errors at earliest point
■ Can’t check types that depend on dynamically 

computed values
■ e.g., array bounds, unless your type system is 

very fancy (dependent types)
      Types and Type Checking



* 70

Static Type Checking

■ Static type checking is performed after parsing, 
before code generation

■ Type of every variable and signature of every 
operator must be known at compile time

■ Can eliminate need to store type information in 
data object if no dynamic type checking is needed

■ Catches many programming errors at earliest point
■ Can’t check types that depend on dynamically 

computed values
■ e.g., array bounds, unless your type system is 

very fancy (dependent types)
      Types and Type Checking



* 71

Static Type Checking

■ Static type checking is performed after parsing, 
before code generation

■ Type of every variable and signature of every 
operator must be known at compile time

■ Can eliminate need to store type information in 
data object if no dynamic type checking is needed

■ Catches many programming errors at earliest point
■ Can’t check types that depend on dynamically 

computed values
■ e.g., array bounds, unless your type system is 

very fancy (dependent types)
      Types and Type Checking



* 72

Static Type Checking

■ Static type checking is performed after parsing, 
before code generation

■ Type of every variable and signature of every 
operator must be known at compile time

■ Can eliminate need to store type information in 
data object if no dynamic type checking is needed

■ Catches many programming errors at earliest point
■ Can’t check types that depend on dynamically 

computed values
■ e.g., array bounds, unless your type system is 

very fancy (dependent types)

Dependent types are not explicitly covered 
in class, but I’m obsessed with them, so 
please ask in office hours or something

      Types and Type Checking



* 73

Static Type Checking

■ Typically places restrictions on languages
■ Garbage collection, usually (except Rust!)
■ References instead of pointers (Rust has both!)
■ All variables initialized when created
■ Variable only used at one type

■ Union types allow for work-arounds, but 
effectively introduce dynamic type checks

      Types and Type Checking
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    Type Judgments
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Format of Type Judgments

■ A type judgement has the form Γ ⊢ t : T
■ Informally: “in gamma, t has type T”
■ Γ ($\Gamma$ in latex) is a typing environment

■ Maps terms (variables, and function names when 
function names are not variables) to types

■ Γ is a set of the form { t1 : T1 , … , tn : Tn }
■ For any ti at most one Ti such that (ti : Ti ∈ Γ) 

■ t is a term (program expression)
■ T is a type to be assigned to t
■ ⊢ pronounced “turnstile” or “entails” ($\vdash$)

                     Type Judgments
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Axioms – Constants (Monomorphic)

Γ ⊢ n : int   (assuming n is an integer constant)

Γ ⊢ true : bool           Γ ⊢ false : bool

■ These rules are true with any typing 
environment

■  Γ, n  are metavariables

                     Type Judgments
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Axioms – Variables (Monomorphic Rule)

Notation: Let Γ(v) = T  if v : T ∈ Γ 
Note: if such T exits, its unique

Variable axiom:

 Γ ⊢ v : T     if Γ(v) = T

                     Type Judgments
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Simple Rules – Arithmetic (Mono)

Primitive Binary operators (⊕ ∈ { +, -, *, …}):
 Γ ⊢ t1: T1     Γ ⊢ t2: τ2  (⊕) : T1 → T2 → T3

 Γ ⊢ t1 ⊕ t2 : T3

Special case: Relations (~ ∈ { < , > , =, <=, >= }):
Γ ⊢ t1 : T   Γ ⊢ t2 : T   (~) : T → T → bool

 Γ ⊢ t1 ~  t2 :bool

For the moment, think T is int

                     Type Judgments
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Example:  { x : int } ⊢ x + 2 = 3 : bool

             
???

{x : int} ⊢ x + 2 = 3 : bool
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What do we need to show first?

Bin

                     Type Judgments



Example:  { x : int } ⊢ x + 2 = 3 : bool

              
   {x : int} ⊢ x + 2 : int                  {x : int} ⊢ 3 : int 

{x : int} ⊢ x + 2 = 3 : bool

* 85

What do we need to show first?

BinBin

                     Type Judgments



Example:  { x : int } ⊢ x + 2 = 3 : bool

                        ???             
   {x : int} ⊢ x + 2 : int                  {x : int} ⊢ 3 : int 

{x : int} ⊢ x + 2 = 3 : bool

* 86

Left-hand side?

BinBin
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Example:  { x : int } ⊢ x + 2 = 3 : bool

{x : int} ⊢ x : int  {x : int} ⊢ 2:int            
   {x : int} ⊢ x + 2 : int                  {x : int} ⊢ 3 : int 

{x : int} ⊢ x + 2 = 3 : bool

* 87

Left-hand side?

BinBin

Bin
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Example:  { x : int } ⊢ x + 2 = 3 : bool

{x : int} ⊢ x : int  {x : int} ⊢ 2:int            
   {x : int} ⊢ x + 2 : int                  {x : int} ⊢ 3 : int 

{x : int} ⊢ x + 2 = 3 : bool

* 88

How to finish?

BinBin

Bin
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Example:  { x : int } ⊢ x + 2 = 3 : bool

{x : int} ⊢ x : int  {x : int} ⊢ 2:int            
   {x : int} ⊢ x + 2 : int                  {x : int} ⊢ 3 : int 

{x : int} ⊢ x + 2 = 3 : bool

* 89

Complete proof (type derivation)

BinBin

Bin

Var Const
Const

                     Type Judgments
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    Questions?



Takeaways
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■ We saw mutual and nested recursive datatypes in 
more detail than last time. Both lead to mutually 
recursive functions.

■ It’s possible to work around mutual recursion if you
want—thanks to higher-order functions and 
polymorphism.

■ Types can be useful for many things.
■ Γ ⊢ t : T means that a term t has type T in type context 

Γ.
■ Such a judgment can be checked statically or 

dynamically (or, IRL, sometimes a mix). 



Next Class: More Type Checking
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■ We saw mutual and nested recursive datatypes in 
more detail than last time. Both lead to mutually 
recursive functions.

■ It’s possible to work around mutual recursion if you
want—thanks to higher-order functions and 
polymorphism.

■ Types can be useful for many things.
■ Γ ⊢ t : T means that a term t has type T in type context 

Γ.
■ Such a judgment can be checked statically or 

dynamically (or, IRL, sometimes a mix). 



Next Class

93

■ EC1 graded!
■ It’s really hard to catch bugs in 

language-model-generated code! (~25% missed 
bugs in final generated code that I caught)

■ Also impacted me when I tried it … traditional 
expertise doesn’t translate directly here 

■ EC2 is late, but coming
■ WA4 will be due Thursday
■ Quiz 3 on MP5 is next Tuesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help


