Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/
Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Objectives for Today

- We will look at another example of the CPS Transformation that we saw last week
Then, taking a step back-how would we actually automate transforming programs like this? We need a way to represent the syntax of our language that allows us to (1) construct a representation of a new (transformed) program, and (2) match over the syntax of the original
- We've seen something like this for lists-if we generalize, we get datatypes We'll cover many kinds of datatypes

Objectives for Today

- We will look at another example of the CPS Transformation that we saw last week
- Then, taking a step back-how would we actually automate transforming programs like this?
- We need a way to represent the syntax of our language that allows us to (1) construct a representation of a new (transformed) program, and (2) match over the syntax of the original We've seen something like this for lists-if we generalize, we get datatypes
- We'll cover many kinds of datatypes

Objectives for Today

- We will look at another example of the CPS Transformation that we saw last week
- Then, taking a step back-how would we actually automate transforming programs like this?
- We need a way to represent the syntax of our language that allows us to (1) construct a representation of a new (transformed) program, and (2) match over the syntax of the original
- We've seen something like this for lists-if we generalize, we get datatypes
- We'll cover many kinds of datatypes

Please post questions on Piazza!

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem $(y, \mid s t)=$ match Ist with
| []-> false
x :: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem (y, $\mid s t)=$ match Ist with
| [] -> false
| x :: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem $(y, \mid s t)=$ match Ist with
| []-> false
x:: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem $(y, \mid s t)=$ match Ist with
| []-> false
x :: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem (y, $\mid s t)=$ match Ist with
| []-> false
x:: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

CPS Transformation Example

CPS Example: List Membership

Before:
let rec mem (y , lst) = match Ist with
| [] -> false
x :: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{Ist}) \mathbf{k}=\left(*\right.$ rule $\left.1^{*}\right)$

CPS Example: List Membership

Before:
let rec mem $(\mathrm{y}$, lst $)=$ match Ist with
| [] -> false
x :: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left(*\right.$ rule $\left.1^{*}\right)$

CPS Example: List Membership

Before:

let rec mem $(\mathrm{y}$, lst $)=$ match Ist with
| []-> false
x :: xs ->
if $(x=y)$ then

true

else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left(*\right.$ rule $\left.1^{*}\right)$

k false (* rule 2 *)

$$
\text { k true (* rule } 2 \text { *) }
$$

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem $(\mathrm{y}$, lst $)=$ match Ist with
| []-> false
x :: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{Ist}) \mathrm{k}=\left({ }^{*}\right.$ rule $\left.1^{*}\right)$
k false (* rule 2 *)
k true (* rule 2 *)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem (y , lst) = match Ist with
| [] -> false
x:: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left({ }^{*}\right.$ rule $\left.1^{*}\right)$
k false (* rule 2 *)
k true (* rule 2 *)
memk ($\mathbf{y}, \mathbf{x s}$) \mathbf{k} (* rule 3 *)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem (y , lst) = match Ist with
| []-> false
x:: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left(*\right.$ rule $\left.1^{*}\right)$
k false (* rule 2 *)
k true (* rule 2 *)
memk (y , xs) $\mathrm{k}(*$ rule 3 *)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem $(\mathrm{y}$, lst $)=$ match Ist with
| []-> false
| x :: xs -> if $(x=y)$ then
true
else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left(*\right.$ rule $\left.1^{*}\right)$

$$
\begin{gathered}
\text { k false }\left(* \text { rule } 2^{*}\right) \\
\left(* \text { rule } 4^{*}\right) \\
\text { eqk }(\mathbf{x}, \mathbf{y})(\text { fun } \mathbf{b}->\quad \\
\text { b b } \\
\text { true }\left(* \text { rule } 2^{*}\right)
\end{gathered}
$$

memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem (y , lst) = match Ist with
| []-> false
| x :: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left(*\right.$ rule $\left.1^{*}\right)$
k false (* rule 2 *)
(* rule 4^{*})
eqk (x, y) (fun b -> b
k true (* rule 2 *)
memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem (y , lst) = match Ist with
| []-> false
| x :: xs ->
if $(x=y)$ then
true
else
mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left(*\right.$ rule $\left.1^{*}\right)$
k false (* rule 2 *)
(* rule 4^{*})
eqk (x, y) (fun $b->$ if b then
k true (* rule 2 *)
else
memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem $(\mathrm{y}$, lst $)=$ match Ist with
| [] -> false
| x:: Xs ->
if ($x=y$) then
true
else mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left(*\right.$ rule $\left.1^{*}\right)$
k false (* rule 2 *)
(* rule 4 *)
eqk (x, y) (fun b-> if b then
k true (* rule 2 *)
else
memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem $(\mathrm{y}, \mathrm{lst})=$ match Ist with
| [] -> false
| x:: xs ->
if ($x=y$) then
true
else mem (y, xs)

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=\left(*\right.$ rule $\left.1^{*}\right)$ match Ist with
| [] -> k false (* rule 2 *)
| x:: xs -> (* rule 4^{*}) eqk (x, y) (fun b-> if b then
k true (* rule 2 *)
else
memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

CPS Example: List Membership

Before:

let rec mem $(y$, lst $)=$ match Ist with
| []-> false
| x :: xs ->
if ($x=y$) then
true
else
mem (y, xs)

After:

let rec memk (y, lst) $\mathrm{k}=\left({ }^{*}\right.$ rule $\left.1^{*}\right)$ match Ist with
| [] -> k false (* rule 2 *)
|x:: xs -> (* rule 4^{*})
eqk (x, y) (fun b-> if b then
k true (* rule 2 *)
else
memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

Please post questions on Piazza!

How to implement automatically in compiler, rather than by hand?

How do we even represent the syntax of our language, and map over it to transform programs?

Datatypes

OCaml Datatype You've Seen: lists

- Frequently used lists in recursive program

■ Matched over two structural cases
■ [] - the empty list
■ (x :: xs) a non-empty list
■ Covers all possible lists
type 'a list = [] | (::) of 'a * `a list
■ Not quite legitimate declaration because of special syntax

OCaml Datatype You've Seen: lists

- Frequently used lists in recursive program

■ Matched over two structural cases
■ [] - the empty list
■ (x :: xs) a non-empty list
■ Covers all possible lists
■ type 'a list = [] | (: :) of 'a * 'a list

- Not quite legitimate declaration because of special syntax

OCaml Datatypes in General

- type name $=C_{1}\left[\begin{array}{ll}\text { of } t y_{1}\end{array}\right]|\ldots| C_{n}\left[\right.$ of $\left.t y_{n}\right]$
- Introduce a type called name
- (fun $x->C_{i} \mathrm{x}$) : ty ${ }_{1}$-> name C_{i} is called a constructor; if the optional type argument is omitted, it is called a constant Constructors are the basis of almost all pattern matching (alt. destruction or, with caveats, elimination)

OCaml Datatypes in General

- type name $=C_{1}\left[\begin{array}{ll}\text { of } t y_{1}\end{array}\right]|\ldots| C_{n}\left[\right.$ of $\left.t y_{n}\right]$
- Introduce a type called name
- (fun $\mathrm{x}->C_{i} \mathrm{x}$) : ty ${ }_{1}$-> name
- C_{i} is called a constructor; if the optional type argument is omitted, it is called a constant Constructors are the basis of almost all pattern matching (alt. destruction or, with some extra machinery, elimination)

OCaml Datatypes in General

- type name $=C_{1}\left[\begin{array}{ll}\text { of } & \left.t y_{1}\right]|\ldots| C_{n}\left[\text { of } t y_{n}\right]\end{array}\right.$
- Introduce a type called name
- (fun $\mathrm{x}->C_{i} \mathrm{x}$) : ty ${ }_{1}$-> name
- C_{i} is called a constructor; if the optional type argument is omitted, it is called a constant
- Constructors are the basis of almost all pattern matching (alt. destruction or, with some extra machinery, elimination)

Datatypes in General

- type name $=C_{1}\left[\begin{array}{ll}\text { of } & \left.t y_{1}\right]|\ldots| C_{n}\left[\text { of } t y_{n}\right]\end{array}\right.$
- Introduce a type called name
- (fun $\mathrm{x}->C_{i} \mathrm{x}$) : ty ${ }_{1}$-> name
- C_{i} is called a constructor; if the optional type argument is omitted, it is called a constant
- Constructors are the basis of almost all case analysis (alt. destruction or, with some extra machinery, induction)

OCaml Datatypes in General

- type name $=C_{1}\left[\begin{array}{ll}\text { of } & \left.t y_{1}\right]|\ldots| C_{n}\left[\text { of } t y_{n}\right]\end{array}\right.$
- Introduce a type called name
- (fun $\mathrm{x}->C_{i} \mathrm{x}$) : ty ${ }_{1}$-> name
- C_{i} is called a constructor; if the optional type argument is omitted, it is called a constant
- Constructors are the basis of almost all pattern matching (alt. destruction or, with some extra machinery, elimination)

Enumeration Types

OCaml Variants

- type name $=C_{1}\left[\begin{array}{ll}\text { of } & \left.t y_{1}\right]|\ldots| C_{n}\left[\text { of } t y_{n}\right]\end{array}\right.$
- Introduce a type called name
- (fun $\mathrm{x}->C_{i} \mathrm{x}$) : ty ${ }_{1}$-> name
- C_{i} is called a constructor; if the optional type argument is omitted, it is called a constant
- Constructors are the basis of almost all pattern matching (alt. destruction or, with some extra machinery, elimination)

Enumeration Types as Variants

An enumeration type is a collection of distinct values

In C and Ocaml they have an order structure; order by order of input

Enumeration Types

Enumeration Types as Variants

\# type weekday = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday;,;
type weekday =
Monday
| Tuesday
| Wednesday
| Thursday
Friday
Saturday
Sunday

Functions over Enumerations

\# let day_after day = match day with
| Monday -> Tuesday
| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday;;
val day_after : weekday -> weekday = <fun> Enumeration Types

Functions over Enumerations

\# let rec days_later n day =

match n with

if $\mathrm{n}>0$ then day_after (days_later ($\mathrm{n}-1$) day) else

days_later ($\mathrm{n}+7$) day;;

val days_later : int -> weekday -> weekday = <fun>
Enumeration Types

Functions over Enumerations

\# let rec days_later n day $=$ match n with
| 0 -> day
if $n>0$ then
day_after (days_later (n-1) day)
else
days_later ($\mathrm{n}+7$) day;,;
val days_later : int -> weekday -> weekday = <fun>
Enumeration Types

Functions over Enumerations

\# let rec days_later n day $=$ match n with
| 0 -> day
| _ ->
if $\mathrm{n}>0$ then
day_after (days_later (n-1) day)
else

days_later ($\mathrm{n}+7$) day;;

val days_later : int -> weekday -> weekday = <fun>
Enumeration Types

Functions over Enumerations

\# let rec days_later n day $=$ match n with

$$
\begin{aligned}
& \mid 0->\text { day } \\
& \left.\right|_{-}-> \\
& \text {if } n>0 \text { then }
\end{aligned}
$$

day_after (days_later (n-1) day)
else
days_later ($\mathrm{n}+7$) day;;
val days_later : int -> weekday -> weekday = <fun>
Enumeration Types

Problem:

\# type weekday = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool let is_weekend day =

Your turn!

Problem:

\# type weekday = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool let is_weekend day =
match day with
Weekend days?

Enumeration Types

Problem:

\# type weekday = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool let is_weekend day =
match day with
| _ -> true
In a better world ...

Enumeration Types

Problem:

\# type weekday = Monday | Tuesday | Wednesday
Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool let is_weekend day =
match day with
| Saturday -> true
Sunday -> true

Other days?

Problem:

\# type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool
let is_weekend day =
match day with
Saturday -> true
Sunday -> true
Monday -> false
Tuesday -> false ...
More concisely?
Enumeration Types

Problem:

\# type weekday = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool let is_weekend day =
match day with
| Saturday -> true
| Sunday -> true
| _ -> false
Yay

Enumeration Types

Enumeration Types in Languages!

\# (* Binary operators *)
type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp
\# (* Unary operators *)
type mon_op = HdOp | TIOp | FstOp | SndOp

Enumeration Types

Disjoint Union Types

Disjoint Union Types as Variants

- Disjoint union of types, with some possibly occurring more than once

ty_{1}

$t \mathrm{ty}_{2}$

ty ${ }_{1}$

- We can also add in some new singleton elements

Disjoint Union Types

(* Different forms of identification *)
type id = DriversLicense of int
| SocialSecurity of int | Name of string
let check_id id =
match id with
DriversLicense num ->
not (List.mem num [13570; 99999])
| SocialSecurity num -> num < 900000000
Name str -> not (str = "John Doe")

Disjoint Union Types

(* Different forms of identification *)
type id = DriversLicense of int
| SocialSecurity of int | Name of string
let check_id id =
match id with
DriversLicense num ->
not (List.mem num [13570; 99999])
| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe")

Problem

- Create a type to represent the currencies for US, UK, Europe and Japan

Your turn!

Problem

- Create a type to represent the currencies for US, UK, Europe and Japan
type currency =
How many constructors?

Disjoint Union Types

Problem

- Create a type to represent the currencies for US, UK, Europe and Japan
type currency =

What currencies?
Disjoint Union Types

Problem

- Create a type to represent the currencies for US, UK, Europe and Japan
type currency =

\| Dollar	$\left(*\right.$ US $\left.{ }^{*}\right)$
\| Pound	$\left(*\right.$ UK $\left.{ }^{*}\right)$
\| Euro	$\left(*\right.$ Europe $\left.{ }^{*}\right)$
\| Yen	$\left(*\right.$ Japan $\left.{ }^{*}\right)$

How to store values?

Problem

- Create a type to represent the currencies for US, UK, Europe and Japan
type currency =
Dollar of int (* US *)
| Pound of int (* UK *)
Euro of int (* Europe *)
| Yen of int (* Japan *)

Disjoint Unions in Languages!

type const =
BoolConst of bool
| IntConst of int
FloatConst of float
| StringConst of string
| NilConst
| UnitConst

Disjoint Unions in Languages!

type const = BoolConst of bool
| IntConst of int
| FloatConst of float
| StringConst of string
| NilConst
| UnitConst

■ How to represent 7 as a const?

Disjoint Unions in Languages!

type const =
BoolConst of bool
| IntConst of int
| FloatConst of float
| StringConst of string
| NilConst
| UnitConst

■ How to represent 7 as a const?
■ Answer: IntConst 7

Please post questions on Piazza!

Polymorphic Datatypes

Polymorphism in Variants

- Variants can also be polymorphic
- For example, the type 'a option gives us something to represent non-existence or failure
\# type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None
- Used to encode partial functions
- Often can replace the raising of an exception

Polymorphic Datatypes

Polymorphism in Variants

- Variants can also be polymorphic
- For example, the type 'a option gives us something to represent non-existence or failure
\# type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None
- Used to encode partial functions
- Often can replace the raising of an exception

Polymorphic Datatypes

Polymorphism in Variants

- Variants can also be polymorphic
- For example, the type 'a option gives us something to represent non-existence or failure
\# type 'a option = Some of 'a | None;; type 'a option = Some of 'a | None

Polymorphic Datatypes

Polymorphism in Variants

- Variants can also be polymorphic
- For example, the type 'a option gives us something to represent non-existence or failure
\# type 'a option = Some of 'a | None;; type 'a option = Some of 'a | None
- Used to encode partial functions
- Often can replace the raising of an exception

Polymorphic Datatypes

Functions producing option

\# let rec first p list =
match list with
| []-> None
| (x :: xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
\# first (fun x -> x > 3) [1; 3; 4; 2; 5];;

- : int option = Some 4
\# first (fun x -> x > 5) [1; 3; 4; 2; 5] i;
- : int option = None

Polymorphic Datatypes

Functions producing option

\# let rec first p list =
match list with
| []-> None
| (x :: xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun> \# first (fun x -> x > 3) [1; 3; 4; 2; 5];;

- : int option = Some 4
\# first (fun x -> x > 5) [1; 3; 4; 2; 5];;
- : int option = None

Polymorphic Datatypes

Functions producing option

\# let rec first p list =
match list with
| []-> None
| (x :: xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun> \# first (fun x -> x > 3) [1; 3; 4; 2; 5];;

- : int option = Some 4
\# first (fun x -> x > 5) [1; 3; 4; 2; 5];;
- : int option = None

Polymorphic Datatypes

Functions over option

\# let result_ok r =
match r with
| None -> false
| Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
\# result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);,

- : bool = true
\# result_ok (first (fun x -> x > 5) [1; 3; 4; 2; 5]);,
- : bool = false

Polymorphic Datatypes

Functions over option

\# let result_ok r =
match r with
| None -> false
| Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
\# result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);,;

- : bool = true
\# result_ok (first (fun x -> x > 5) [1; 3; 4; 2; 5]);;
- : bool = false

Polymorphic Datatypes

Functions over option

\# let result_ok r =
match r with
| None -> false
| Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
\# result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;

- : bool = true
\# result_ok (first (fun x -> x > 5) [1; 3; 4; 2; 5]);,;
- : bool = false

Polymorphic Datatypes

Problem

- Write a hd on lists that doesn't raise an exception and works at all types of lists.

Your turn!

Polymorphic Datatypes

Problem

■ Write a hd on lists that doesn't raise an exception and works at all types of lists.

let hd list = match list with

Nil case?

Polymorphic Datatypes

Problem

■ Write a hd on lists that doesn't raise an exception and works at all types of lists.
let hd list = match list with
| [] -> None
Cons case?

Polymorphic Datatypes

Problem

■ Write a hd on lists that doesn't raise an exception and works at all types of lists.
let hd list = match list with
| [] -> None
(x :: xs) -> Some x

Polymorphic Datatypes

Mapping over Variants

\# let optionMap fopt =
match opt with
| None -> None
| Some x -> Some (fx);;
val optionMap :
('a -> 'b) -> 'a option -> 'b option = <fun>
\# optionMap
(fun $x->x-2$)
(first (fun $x->x>3$) [1; 3; 4; 2; 5]);;

- : int option = Some 2

Polymorphic Datatypes

Mapping over Variants

\# let optionMap fopt =
match opt with
| None -> None
| Some x -> Some (f x);;
val optionMap :
('a -> 'b) -> 'a option -> 'b option = <fun>
\# optionMap
(fun $x->x-2$)
(first (fun x -> x > 3) [1; 3; 4; 2; 5]);;

- : int option = Some 2

Polymorphic Datatypes

Folding over Variants

\# let optionFold someFun noneVal opt = match opt with
| None -> noneVal
| Some x -> someFun x;;
val optionFold :
('a -> 'b) -> 'b -> 'a option -> 'b = <fun>
\# let optionMap fopt =
optionFold (fun x -> Some (f x)) None opt;;
val optionMap :

$$
\begin{aligned}
(' a ~->~ ' b) ~->~ ' a ~ o p t i o n ~->~ & \text { 'b option }=\text { < fun> } \\
& \text { Polymorphic Datatypes }
\end{aligned}
$$

Folding over Variants

\# let optionFold someFun noneVal opt = match opt with
| None -> noneVal
Some x -> someFun x;;
val optionFold :
('a -> 'b) -> 'b -> 'a option -> 'b = <fun>
\# let optionMap fopt =
optionFold (fun x -> Some (f x)) None opt;;
val optionMap :

$$
\begin{array}{r}
\text { ('a -> 'b) -> 'a option -> 'b option }=<\text { fun> } \\
\text { Polymorphic Datatypes }
\end{array}
$$

Please post questions on Piazza!

Preview: Recursive Datatypes

Recursive Types as Variants

- The type being defined may be a component of itself

Preview

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)
let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)
let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)
let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))
Node

Node
Leaf (-7)

Preview

Recursive Data Types in Languages!

\# type exp =
| VarExp of string
| ConstExp of const
| MonOpAppExp of mon_op * exp
| BinOpAppExp of bin_op * exp * exp
IfExp of exp* exp * exp
AppExp of exp * exp
FunExp of string * exp

How do we even represent the syntax of our language, and map over it to transform programs?

How to implement automatically in compiler, rather than by hand?

Please post questions on Piazza!

Takeaways

■ Variants let us represent custom datatypes

- Can be polymorphic
- Can be recursive
- Can represent lists and trees
- Can represent language syntax!
- Can do two things with them:
- construct
- destruct (match, eliminate)
- Can write program transformations, interpreters, and compilers this way:)

Next Class

- I will be back! Lecture will happen in person
- EC1 is due, if interested (extra credit)
- WA3XC also due, if interested (extra credit) MP4 will be due next Tuesday
- All deadlines can be found on course website Use office hours and class forums for help

