Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/
Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Objectives for Today

- Today, we will continue where we left off Tuesday with continuation-passing style (CPS), which is super useful for compilers and interpreters
- We will learn how to write more interesting functions in CPS, like how to nest continuations
- We will then see how we can transform functions written in OCaml into CPS
- CPS transformation is useful and important!

Questions from last time?

Continuation-Passing Style (CPS)

Continuation Passing Style

- Continuation Passing Style (CPS): Writing functions such that all functions calls take a continuation to which to pass the result, and return no result
■ CPS is useful as:
- A compilation technique to implement non-local control flow (especially useful in interpreters)
- A formalization of non-local control flow in denotational semantics
- A possible intermediate state in compiling functional code

Example

- Simple reporting continuation:
\# let report x = (print_int x; print_newline()); ; val report : int -> unit = <fun>
- Simple function using a continuation:
\# let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> 'a) -> 'a = <fun> \# addk $(22,20)$ report;;
42
- : unit = ()

CPS

Example

- Simple reporting continuation:
\# let report x = (print_int x; print_newline());; val report : int -> unit = <fun>
- Simple function using a continuation: \# let addk (a, b) k=k (a + b);; val addk : int * int -> (int -> 'a) -> 'a = <fun> \# addk $(22,20)$ report;;
42
- : unit = ()

CPS

Example

- Simple reporting continuation:
\# let report x = (print_int x; print_newline());; val report : int -> unit = <fun>
- Simple function using a continuation: \# let addk (a, b) k=k (a + b);; val addk : int * int -> (int -> 'a) -> 'a = <fun> \# addk $(22,20)$ report;;
42
- : unit = ()

Example

- Simple reporting continuation:
\# let report x = (print_int x; print_newline());; val report : int -> unit = <fun>
- Simple function using a continuation:
\# let addk (a, b) k=k (a + b);;
val addk : int * int -> (int -> 'a) -> 'a = <fun>
\# addk $(22,20)$ report;;
42
- : unit = ()

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- More examples:
\# let subk (x, y) k = k ($\mathrm{x}-\mathrm{y}$); ;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
\# let eqk (x, y) k = k (x = y) ; ;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun> \# let timesk (x, y) k = k (x * y) ;;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

CPS

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- More examples:
\# let subk (x, y) $\mathrm{k}=\mathrm{k}(\mathrm{x}-\mathrm{y})$; ;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
\# let eqk (x, y) k = k (x = y); ;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
\# let timesk (x, y) $\mathrm{k}=\mathrm{k}(\mathrm{x} * \mathrm{y}) ;$;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- More examples:
\# let subk (x, y) $\mathbf{k}=\mathbf{k}(\mathrm{x}-\mathrm{y})$;;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
\# let eqk (x, y) $\mathbf{k}=\mathbf{k}(\mathrm{x}=\mathrm{y})$; ;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
\# let timesk (x, y) $\mathbf{k}=\mathbf{k}$ (x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- More examples:
\# let subk (x, y) $\mathbf{k}=\mathbf{k}(\mathrm{x}-\mathrm{y})$;;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
\# let eqk (x, y) $\mathbf{k}=\mathbf{k}(\mathrm{x}=\mathrm{y})$; ;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
\# let timesk (x, y) $\mathbf{k}=\mathbf{k}$ (x^{*} y) ; ;
val timesk : int * int -> (int -> 'a) -> 'a = <fun> \# subk $(22,20)$ report;; What happens?

Nesting Continuations

Nesting Continuations

(* Asked last class: can we compose these? Yes *)

 \# let add_triple (x, y, z) =$$
(x+y)+z_{i} ;
$$

val add_triple
: int * int * int $->$ int $=<$ fun $>$

Nesting Continuations

(* Asked last class: can we compose these? Yes *)
\# let add_triple (x, y, z) =

$$
(\mathbf{x}+\mathbf{y})+z_{i}^{\prime} ;
$$

val add_triple
: int * int * int -> int = <fun>

Nesting

Nesting Continuations

(* Asked last class: can we compose these? Yes *)

 \# let add_triple (x, y, z) =$$
\text { let } p=(x+y) \text { in } p+z_{;} ;
$$

val add_triple
: int * int * int $->$ int $=<$ fun $>$

Nesting Continuations

(* Asked last class: can we compose these? Yes *) \# let add_triple (x, y, z) =
let $\mathbf{p}=\mathbf{x}+\mathbf{y}$ in $\mathbf{p}+z_{;}^{\prime} ;$
val add_triple
: int * int * int -> int = <fun>

Nesting Continuations

(* Asked last class: can we compose these? Yes *)
\# let add_triple (x, y, z) =
let $\mathrm{p}=\mathbf{x}+\mathbf{y}$ in $\mathrm{p}+\mathrm{z}_{\text {; }} ;$
val add_triple
: int * int * int -> int = <fun>

Nesting Continuations

\# let addk (a, b) k = k (a + b);;

val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple $(\mathrm{x}, \mathrm{y}, \mathrm{z})=$
let $\mathrm{p}=\mathbf{x}+\mathbf{y}$ in $\mathrm{p}+\mathrm{z}$; ;
val add_triple
: int * int * int -> int = <fun>

Nesting Continuations

\# let addk (a, b) k=k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k $(x, y, z) \mathbf{k}=$
let $p=x+y$ in $p+z_{;} ;$(*WIP *)

Nesting

Nesting Continuations

\# let addk (a, b) k=k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k (x,y,z)k=
let $\mathrm{p}=\mathbf{x}+\mathbf{y}$ in $\mathrm{p}+\mathrm{z}_{;} ;\left({ }^{*}\right.$ WIP *)

Nesting

Nesting Continuations

\# let addk (a, b) k=k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k (x, y, z) k =
let $\mathbf{p}=\mathbf{x}+\mathbf{y}$ in $\mathbf{p}+\mathbf{z}_{;} ;$(*WIP *)

Nesting

Nesting Continuations

\# let addk (a, b) k=k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k (x,y,z) k =
addk (x, y) (fun $p->\operatorname{addk}(p, z) k$); $;$

Nesting Continuations

\# let addk (a, b) k = k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k (x, y, z) k = addk (x, y) (fun p -> addk (p, z) k) ;;
val add_triple_k : int * int * int -> (int -> 'a) -> 'a = <fun>

Nesting Continuations

\# let addk (a, b) k = k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k $(x, y, z) \mathbf{k}=$ addk (x, y) (fun p -> addk (p, z) k); ;
val add_triple_k : int * int * int -> (int -> 'a) -> 'a = <fun>

Nesting Continuations

\# let addk (a, b) k = k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k (x, y, z) k = addk (x, y) (fun p -> addk (p, z) k) ;;
val add_triple_k :
int * int * int -> (int -> 'a) -> 'a = <fun>
\# add_triple_k $(1,2,3)$ report;; What happens?

Nesting Continuations

\# let addk (a, b) k = k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k $(x, y, z) \mathbf{k}=$ addk (x, y) (fun p -> addk (p, z) k); ;
val add_triple_k :
int * int * int -> (int -> 'a) -> 'a = <fun>
\# add_triple_k $(1,2,3)$ report; ; What happens?

Nesting

Nesting Continuations

\# let addk (a, b) k = k (a + b);;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k $(x, y, z) \mathbf{k}=$ addk (x, y) (fun p-> addk (p, z) \mathbf{k}); ;
val add_triple_k :
int * int * int -> (int -> 'a) -> 'a = <fun>
\# add_triple_k $(1,2,3)$ report;; What happens?

Nesting

Nesting Continuations

\# let addk (a, b) k = k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k (x, y, z) k = addk (x, y) (fun p -> addk (p, z) k); ;
val add_triple_k :
int * int * int -> (int -> 'a) -> 'a = <fun>
\# add_triple_k $(1,2,3)$ report;; What happens?

Nesting

Nesting Continuations

\# let addk (a, b) k = k (a + b); ;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *) \# let add_triple_k ($\mathbf{x}, \mathbf{y}, \mathbf{z}) \mathrm{k}=$ addk (\mathbf{x}, \mathbf{y}) (fun $\mathbf{p}->\operatorname{addk}(\mathbf{p}, \mathbf{z})$ k) ${ }_{\prime} ;$
val add_triple_k :
int * int * int -> (int -> 'a) -> 'a = <fun>
\# add_triple_k $(\mathbf{1}, \mathbf{2}, \mathbf{3})$ report;; What happens?

Nesting

Nesting Continuations

\# let addk (a, b) k = k (a + b);;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
\# let add_triple_k $(x, y, z) \mathbf{k}=$ addk (x, y) (fun p-> addk (p, z) \mathbf{k}); ;
val add_triple_k :
int * int * int -> (int -> 'a) -> 'a = <fun>
\# add_triple_k $(1,2,3)$ report;; What happens?

Nesting Continuations

\# let addk (a, b) k = k (a + b);;
val addk
: int * int -> (int -> 'a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *) \# let add_triple_k $(x, y, z) \mathbf{k}=$ addk (x, y) (fun p-> addk (p, z) \mathbf{k});;
val add_triple_k :
int * int * int -> (int -> 'a) -> 'a = <fun>
\# add_triple_k (1, 2, 3) report;;
6

- : unit = ()

Questions so far?

Nesting

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$
$x+(y+z) ; ;$

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$
x + (y + z) i;

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$
let $r=y+z$ in $x+r ; ;$

Nesting

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$
let $r=y+z$ in $x+r ; ;$
\# let add_triple_k (x, y, z) k =
??? $;$
Your turn!

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$

$$
\text { let } r=\mathbf{y}+\mathbf{z} \text { in } x+r ; ;
$$

\# let add_triple_k (x, y, z) k =

???:;

Lift first computation to CPS

Nesting

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$
let $r=\mathbf{y}+\mathbf{z}$ in $\mathbf{x}+r_{i ;}$
\# let add_triple_k (x, y, z) k = addk (y, z) ? ???;,;
Lift first computation to CPS

Nesting

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$
let $r=y+z$ in $x+r ; ;$
\# let add_triple_k (x, y, z) k = addk (y, z) ????;,
What is the continuation?

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$

$$
\text { let } r=y+z \text { in } x+r ; ;
$$

\# let add_triple_k (x, y, z) k = addk (y, z) (fun r-> ???);;
What is the continuation?

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$ let $r=y+z$ in $\mathbf{x}+\mathbf{r} ; ;$
\# let add_triple_k (x, y, z) k = addk (y, z) (fun r-> ???);;
Lift second computation to CPS

Nesting

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$ let $r=y+z$ in $\mathbf{x}+\mathbf{r} ;$;
\# let add_triple_k (x, y, z) k = addk (y, z) (fun r-> addk (\mathbf{x}, \mathbf{r}) ?? ? ; ; Lift second computation to CPS

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$ let $r=y+z$ in $x+r ; ;$
\# let add_triple_k (x, y, z) k = addk (y, z) (fun r-> addk (x, r) ?? ?); ; What happens after the final addk?

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$
let $r=y+z$ in $x+r ; ;$
\# let add_triple_k (x, y, z) k = addk (y, z) (fun r-> addk (x, r) k);; Done!

add_triple: A Different Order

How do we write add_triple_k to use a different order?
\# let add_triple $(x, y, z)=$ let $r=y+z$ in $x+r ; ;$
\# let add_triple_k (x, y, z) k = addk (y, z) (fun r-> addk (x, r) k);;
\# add_triple_k $(1,2,3)$ report;;
Nesting

add_triple: Both Orders

How do we write add_triple_k to use a different order?
$\left(*(x+y)+z^{*}\right)$
let add_triple_k $(x, y, z) k=$ addk (x, y) (fun $p->\operatorname{addk}(p, z) k)$
$(* x+(y+z) *)$
let add_triple_k (x, y, z) k = addk (y, z) (fun r-> addk (x, r) k)

add_triple: Both Orders

How do we write add_triple_k to use a different order?
(* $\left.(x+y)+z^{*}\right)$
let add_triple_k (x, y, z) k =
addk (\mathbf{x}, \mathbf{y}) (fun $\mathrm{p}->\operatorname{addk}(\mathrm{p}, \mathrm{z}) \mathrm{k}$)
(* $\left.x+(y+z)^{*}\right)$
let add_triple_k (x, y, z) k = addk (\mathbf{y}, \mathbf{z}) (fun r-> addk (x, r) k)

add_triple: Both Orders

How do we write add_triple_k to use a different order?
(* $\left.(x+y)+z^{*}\right)$
let add_triple_k (x, y, z) k =
addk (\mathbf{x}, \mathbf{y}) (fun $\mathbf{p}->\operatorname{addk}(\mathrm{p}, \mathrm{z}) \mathrm{k}$)
(* $\left.x+(y+z)^{*}\right)$
let add_triple_k (x, y, z) k = addk (\mathbf{y}, \mathbf{z}) (fun $\mathbf{r}->\operatorname{addk}(\mathrm{x}, \mathrm{r}) \mathrm{k}$)

add_triple: Both Orders

How do we write add_triple_k to use a different order?
(* $\left.(x+y)+z^{*}\right)$
let add_triple_k (x, y, z) k = addk (\mathbf{x}, \mathbf{y}) (fun \mathbf{p}-> addk (\mathbf{p}, \mathbf{z}) k)
$(* x+(y+z) *)$
let add_triple_k (x, y, z) k = addk (\mathbf{y}, \mathbf{z}) (fun $\mathbf{r}->$ addk (\mathbf{x}, \mathbf{r}) k)

add_triple: Both Orders

How do we write add_triple_k to use a different order?
$\left(*(x+y)+z^{*}\right)$
let add_triple_k (x, y, z) k = addk (x, y) (fun p-> addk (p, z) k)
$(* x+(y+z) *)$
let add_triple_k (x, y, z) $\mathbf{k}=$ addk (y, z) (fun r-> addk (x, r) k)

Questions so far?

CPS and Recursion

Recursive Functions

Recall:

\# let rec factorial $\mathrm{n}=$

$$
\text { if } \mathrm{n}=0 \text { then }
$$

1
else
n * factorial (n-1) ;;
val factorial : int $->$ int $=<$ fun $>$
\# factorial 5;;

- : int = 120

CPS and Recursion

Terminology

■ A function is in Direct Style when it returns its result back to the caller.

- A function is in Continuation Passing Style when it, and every function call in it, passes its result to another function.
- Instead of returning the result to the caller, we pass it forward to another function giving the computation after the call.

CPS and Recursion

Recursive Functions

Direct Style:

\# let rec factorial $\mathrm{n}=$

$$
\text { if } \mathrm{n}=0 \text { then }
$$

$$
1
$$

else
To simplify transformation to CPS, make order of execution explicit first.
n * factorial (n-1);;

CPS and Recursion

Recursive Functions

(Refactoring) Direct Style:
\# let rec factorial $\mathrm{n}=$

$$
\begin{aligned}
& \text { if } \mathbf{n}=\mathbf{0} \text { then } \\
& 1 \\
& \text { else }
\end{aligned}
$$

n * factorial ($\mathrm{n}-1$); ;

CPS and Recursion

Recursive Functions

(Refactoring) Direct Style:

\# let rec factorial $\mathrm{n}=$
let $\mathbf{b}=(\mathbf{n}=\mathbf{0})$ in (* first computation *)
if \mathbf{b} then
1
else
n * factorial ($\mathrm{n}-1$);;

CPS and Recursion

Recursive Functions

(Refactoring) Direct Style:

\# let rec factorial $\mathrm{n}=$

$$
\text { let } b=(n=0) \text { in (} * \text { first computation } *)
$$

if b then
1
else
n * factorial ($\mathbf{n - 1}$); ;

CPS and Recursion

Recursive Functions

(Refactoring) Direct Style:

\# let rec factorial $\mathrm{n}=$

```
    let b = ( }\textrm{n}=0)\mathrm{ in (* first computation *)
    if b}\mathrm{ then
        1
    else
    let r = factorial (n-1) in
    n**';
```

CPS and Recursion

Recursive Functions

(Refactoring) Direct Style:

\# let rec factorial $\mathrm{n}=$

$$
\begin{aligned}
& \text { let } b=(n=0) \text { in }(* \text { first computation } *) \\
& \text { if } b \text { then } \\
& 1 \\
& \text { else } \\
& \text { let } r=\text { factorial }(\mathbf{n}-\mathbf{1}) \text { in } \\
& n * r ; ;
\end{aligned}
$$

CPS and Recursion

Recursive Functions

(Refactoring) Direct Style:

\# let rec factorial $\mathrm{n}=$

$$
\text { let } b=(n=0) \text { in (} * \text { first computation } *)
$$

if b then
1
else
let $\mathbf{s}=\mathbf{n - 1} \mathbf{i n}(*$ second computation *)
let $\mathbf{r}=$ factorial \mathbf{s} in (* third computation *)
n * r;;
CPS and Recursion

Recursive Functions

(Refactored) Direct Style:

\# let rec factorial $n=$

$$
\text { let } \mathrm{b}=(\mathrm{n}=0) \text { in }(* \text { first computation } *)
$$

if b then
1 (* returned value *)
else
let $\mathrm{s}=\mathrm{n}-1$ in (* second computation *)
let $\mathrm{r}=$ factorial s in ($*$ third computation $*$)
\mathbf{n} * \mathbf{r};; (* returned value *)

CPS and Recursion

Recursive Functions

(Refactored) Direct Style:

\# let rec factorial $\mathrm{n}=$

$$
\text { let } b=(n=0) \text { in }(* \text { first computation } *)
$$

if b then
1 (*returned value *)
else

Rather than return these values, we will pass them forward.
let $\mathrm{s}=\mathrm{n}-1$ in (* second computation *)
let $r=$ factorial s in ($*$ third computation *)
$\mathbf{n} * \mathbf{r} ;$; (*returned value *)
CPS and Recursion

Recursive Functions

■ Continuation Passing Style:

\# let rec factorialk $\mathrm{nk}=$

$$
\begin{aligned}
& \text { eqk }(\mathrm{n}, 0) \text { (fun b b-> (} * \text { first computation } *) \\
& \text { if b then } \\
& \text { k } \mathbf{1}(* \text { passed value } *) \begin{array}{l}
\text { Rather than returr } \\
\text { these values, we w } \\
\text { pass them forward }
\end{array} \\
& \text { else }
\end{aligned}
$$

subk ($\mathrm{n}, 1$) (fun s -> (* second computation *)
factorialk s (fun r -> (* third computation *) timesk ($\mathbf{n}, \mathbf{r} \mathbf{r}) \mathrm{k})$);; (${ }^{\text {passedvalue *) }}$

CPS and Recursion

Recursive Functions

- Continuation Passing Style:
\# let rec factorialk $\mathrm{n} \mathbf{k}=$

$$
\begin{aligned}
& \text { eqk }(\mathrm{n}, 0) \text { (fun } \mathrm{b}->(* \text { first computation } *) \\
& \text { if } \mathrm{b} \text { then } \\
& \mathbf{k} 1(* \text { passed value } *) \begin{array}{l}
\begin{array}{l}
\text { Rather than return } \\
\text { these values, we } \mathbf{w} \\
\text { pass them forward }
\end{array} \\
\text { else }
\end{array}
\end{aligned}
$$

subk ($\mathrm{n}, 1$) (fun s -> (* second computation *)
factorialk s (fun r-> (* third computation *) timesk $(\mathrm{n}, \mathrm{r}) \mathbf{k})$)); ((passed)value *)

CPS and Recursion

Recursive Functions

(Refactored) Direct Style:

\# let rec factorial $\mathrm{n}=$

$$
\text { let } \mathbf{b}=(\mathbf{n}=\mathbf{0}) \text { in (*firstcomputation } *)
$$

if b then

$$
1 \text { (* returned value *) same order, but are }
$$ same order, but are

transformed to CPS.
These stay in the
let s=n-1 in (${ }^{\text {second computation } *) ~}$
let $\mathbf{r}=\mathbf{f a c t o r i a l} \mathbf{s}$ in (*thirdcomputation *)
n * r,;, (* returned value *)

CPS and Recursion

Recursive Functions

■ Continuation Passing Style:

\# let rec factorialk $\mathrm{nk}=$

$$
\begin{aligned}
& \text { eqk }(\mathrm{n}, 0) \text { (fun b-> (*first)omputation *) } \\
& \text { if } b \text { then } \\
& \text { These stay in the } \\
& \text { same order, but are } \\
& \text { transformed to CPS. } \\
& \text { else }
\end{aligned}
$$

subk $(\mathrm{n}, 1)$ (fun s -> (* secondcomputation *) factorialk s (fun r-> (* third) $o m p u t a t i o n ~ *) ~$ timesk (n, r) k)));; (* passed value *)

CPS and Recursion

Recursive Functions

■ Continuation Passing Style:

\# let rec factorialk $\mathrm{nk}=$

eqk $(\mathrm{n}, 0)$ (fun b-> (* first computation *)

if b then
k 1 (* passed value *)
else
subk ($\mathrm{n}, 1$) (fun s-> (* second computation *) factorialk s (fun r-> (* third computation *) timesk (n, r r) k)));, (* passed value *)

CPS and Recursion

Recursive Functions

■ Continuation Passing Style: \# let rec factorialk $\mathrm{nk}=$

$$
\begin{aligned}
& \text { eqk }(\mathrm{n}, 0)(\text { fun } b->(* \text { first computation } *) \\
& \text { if b then } \\
& \text { k } 1(* \text { passed value } *) \begin{array}{l}
\text { How to transform } \\
\text { recursive call? }
\end{array}
\end{aligned}
$$

Recursive Functions

(Refactored) Direct Style:

\# let rec factorial $\mathrm{n}=$

$$
\begin{aligned}
& \text { let } \mathrm{b}=(\mathrm{n}=0) \text { in }(* \text { first computation } *) \\
& \text { if } \mathrm{b} \text { then } \\
& 1(* \text { returned value } *) \quad \begin{array}{l}
\text { How to transform } \\
\text { recursive call? }
\end{array}
\end{aligned}
$$

let $r=$ factorials in ($*$ third computation $*$)
$\mathrm{n} * \mathrm{r}_{\text {; }}$ (${ }^{*}$ returned value *)

CPS and Recursion

Recursive Functions

To transform a recursive call to CPS, must build intermediate continuation to:

- take recursive value,
- build it to final result, and
- pass it to final continuation.
let $r=$ factorial s in
n * r

CPS and Recursion

Recursive Functions

To transform a recursive call to CPS, must build intermediate continuation to:
■ take recursive value,

- build it to final result, and

■ pass it to final continuation.

let $\mathbf{r}=$ factorial s in
 n * r

CPS and Recursion

Recursive Functions

To transform a recursive call to CPS, must build intermediate continuation to:
■ take recursive value,

- build it to final result, and
- pass it to final continuation.
let $\mathbf{r}=$ factorial s in
$\mathbf{n}^{*} \mathrm{r}$

CPS and Recursion

Recursive Functions

To transform a recursive call to CPS, must build intermediate continuation to:
■ take recursive value,

- build it to final result, and

■ pass it to final continuation.
factorialk s (fun r->
timesk (n, r) k)
CPS and Recursion

Questions so far?

CPS and Recursion

Example: CPS for length

let rec length list = match list with
| [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?

CPS and Recursion

Example: CPS for length

let rec length list = match list with
| [] -> 0
| (a :: bs) -> let r = length bs in 1 + r

What is the let-expanded version of this?

CPS and Recursion

Example: CPS for length

let rec length list = match list with
| [] -> 0
| (a :: bs) -> let r = length bs in $1+r$

What is the CPS version of this?

CPS and Recursion

Example: CPS for length

let rec lengthk list $\mathbf{k}=(*$ WIP *) match list with
| [] -> 0
| (a :: bs) -> let r = length bs in $1+r$

What is the CPS version of this?

CPS and Recursion

Example: CPS for length

let rec lengthk list $\mathbf{k}=(*$ WIP *) match list with
| [] -> k 0
| (a :: bs) -> let r = length bs in $1+r$

What is the CPS version of this?

CPS and Recursion

Example: CPS for length

let rec lengthk list $\mathbf{k}=(*$ WIP *) match list with
| [] -> k 0
| (a :: bs) -> let r = lengthk bs in $1+r$

What is the CPS version of this?

CPS and Recursion

Example: CPS for length

let rec lengthk list $\mathbf{k}=(*$ WIP *) match list with
| [] -> k 0
| (a :: bs) -> let $\mathbf{r}=$ lengthk bs in $1+r$

What is the CPS version of this?

CPS and Recursion

Example: CPS for length

let rec lengthk list $\mathbf{k}=(*$ WIP *) match list with
| [] -> k 0
| (a :: bs) -> lengthk bs (fun r-> 1 + r)

What is the CPS version of this?

CPS and Recursion

Example: CPS for length

let rec lengthk list $\mathbf{k}=(*$ WIP *) match list with
| [] -> k 0
| (a :: bs) -> lengthk bs (fun r-> $\mathbf{1}$ + r)

What is the CPS version of this?

CPS and Recursion

Example: CPS for length

let rec lengthk list $\mathbf{k}=(*$ WIP *) match list with
| [] -> k 0
| (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)
What is the CPS version of this?

CPS and Recursion

Example: CPS for length

let rec lengthk list k =

 match list with| [] -> k 0
| (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)
\# lengthk [2; 4; 6; 8] report;;

- : unit = ()

Example: CPS for length

let rec lengthk list $\mathrm{k}=$ match list with
| [] -> k 0
| (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)
\# lengthk [2; 4; 6; 8] report;;
4

- : unit = ()

Example: CPS for length

let rec lengthk list $\mathrm{k}=$ match list with
| [] -> k 0
| (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)
\# lengthk [2; 4; 6; 8] report;;
4

- : unit = ()

CPS for sum

\# let rec sum list = match list with | []-> 0
| x :: xs -> x + sum xs;; ;
val sum : int list $->$ int $=<$ fun $>$
\# let rec sumk list k =

match list with

| [] -> k 0
| x : : xs -> sumk xs (fun r-> addk (x, r) k) ;,
val sumk : int list -> (int -> 'a) -> 'a = <fun>
CPS and Recursion

CPS for sum

\# let rec sum list = match list with
| []-> 0
| x :: xs -> x + sum xs;;
val sum : int list -> int = <fun>
\# let rec sumk list k =

match list with

| []-> k 0
| x :: xs -> sumk xs (fun r-> addk (x, r) k) ;;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
CPS and Recursion

CPS for sum

\# let rec sum list = match list with | []-> 0
| $\mathrm{x}:: \mathrm{xs}$-> let $\mathbf{r}=$ sum xs in $\mathrm{x}+\mathrm{r}$;;
val sum : int list -> int = <fun>
\# let rec sumk list k =

match list with

| []-> k 0
| x :: xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
CPS and Recursion

CPS for sum

\# let rec sum list = match list with | []-> 0
| $\mathrm{x}:: \mathrm{xs}$-> let $\mathrm{r}=$ sum xs in $\mathrm{x}+\mathrm{r}$;;
val sum : int list -> int = <fun>
\# let rec sumk list k =

match list with

| []-> k 0
| x :: xs -> sumk xs (fun r -> addk (x, r) k) ;;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
CPS and Recursion

CPS for sum

\# let rec sum list = match list with

$$
\text { | [] -> } 0
$$

| $\mathrm{x}::$ xs -> let $\mathrm{r}=$ sum xs in $\mathrm{x}+\mathrm{r}$;;
val sum : int list -> int = <fun>
\# let rec sumk list $\mathbf{k}=$
match list with
| []-> k 0
| x :: xs -> sumk xs (fun r-> addk (\mathbf{x}, \mathbf{r}) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
CPS and Recursion

CPS for sum

\# let rec sum list = match list with

$$
\text { | [] -> } 0
$$

| $\mathrm{x}:: \mathrm{xs}$-> let $\mathrm{r}=$ sum xs in $\mathrm{x}+\mathrm{r}$;;
val sum : int list -> int = <fun>
\# let rec sumk list $\mathrm{k}=$
match list with

$$
\text { | [] -> k } 0
$$

| x :: xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
CPS and Recursion

CPS and Higher-Order Functions

CPS for Higher Order Functions

- In CPS, every function takes a continuation to receive its result
- Accordingly:
- Functions passed as arguments take continuations
- Functions returned as results take continuations
- CPS version of higher-order functions must expect input functions to take continuations

CPS and HOFs

Example: all

\# let rec all $(\mathrm{p}, \mathrm{I})=$ match I with
| [] -> true
| x:: xs ->
let $b=p x$ in
if b then
all (p, xs)
else
false;;
val all : ('a -> bool) -> 'a list -> bool = <fun>
CPS and HOFs

Example: all

\# let rec allk $(\mathrm{p}, \mathrm{I}) \mathbf{k}=\left(*\right.$ WIP $\left.{ }^{*}\right)$ match I with
| [] -> true
| x:: xs ->
let $b=p x$ in
if b then
all (p, xs)
else
false;;

CPS and HOFs

Example: all

\# let rec allk $(\mathrm{p}, \mathrm{l}) \mathrm{k}=(*$ WIP *) match I with
| [] -> ?? true
| x:: xs ->
let $b=p x$ in
if b then
all (p, xs)
else
false;;

Example: all

\# let rec allk $(\mathrm{p}, \mathrm{l}) \mathrm{k}=(*$ WIP *)
match I with
| [] -> k true
We pass it forward.
| x :: xs ->
let $b=p x$ in
if b then
all (p, xs)
else
false;;

CPS and HOFs

Example: all

\# let rec allk $(\mathrm{p}, \mathrm{l}) \mathrm{k}=(*$ WIP *)
match I with
| [] -> k true
| x :: xs ->
let $\mathbf{b}=\mathbf{p} \mathbf{x}$ in
What do we do here?
if b then
all (p, xs)
else
false;;

CPS and HOFs

Example: all

\# let rec allk $(\mathrm{p}, \mathrm{l}) \mathrm{k}=(*$ WIP *) match I with

$$
\begin{aligned}
& \text { | [] -> k true } \\
& \text { | } \mathbf{x : : ~ x s ~ - > ~} \\
& \quad \text { let } \mathbf{b}=\mathbf{p} \mathbf{x} \text { in }
\end{aligned}
$$

if b then
all (p, xs)
else
false;;

We need to assume that input function \mathbf{p} has been transformed to CPS already.

CPS and HOFs

Example: all

\# let rec allk (pk, I) $\mathrm{k}=(*$ WIP *) match I with

$$
\begin{aligned}
& \text { | [] -> k true } \\
& \text { | x :: xs -> }
\end{aligned}
$$

pk x (fun b -> if b then

We need to assume that input function pk has been transformed to CPS already.
all (p, xs)
else
false);,;

Example: all

\# let rec allk (pk, l) k = (* WIP *)

match I with
| [] -> k true
| x :: xs ->
pk x (fun b->
if b then
all ($p, x s$)
else
false);;

Now we can transform these to CPS in the standard way.

CPS and HOFs

Example: all

\# let rec allk (pk, l) k = (* WIP *)
match I with
| [] -> k true
|x:: xs ->
pk x (fun b ->
if b then
allk (pk, xs) k else
k false);;

Now we can transform these to CPS in the standard way.

CPS and HOFs

Example: all

\# let rec allk (pk, I) k = match I with
| [] -> k true
| x :: xs ->
pk x (fun b->
if b then
allk (pk, xs) k
else
k false);;
val allk : ('a -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun>
CPS and HOFs

Example: all

\# let rec allk (pk, l) k = match I with
| [] -> k true
|x:: xs ->
pk x (fun b ->
if b then allk (pk, xs) k else

k false);;

val allk : ('a -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun> CPS and HOFs

Questions so far?

CPS Transformation

CPS Transformation

- Step 1: Add continuation argument to any function definition
- let f arg $=\mathrm{e} \Rightarrow$ let f arg $\mathbf{k}=\mathrm{e}$
- Idea: Every function takes an extra parameter saying where the result goes
- Step 2: A simple expression in tail position should be passed to a continuation instead of returned
- a $\Rightarrow \mathbf{k}$ a
- Assuming a is a constant or variable.
- "Simple" = "No available function calls."

CPS Transformation

CPS Transformation

- Step 1: Add continuation argument to any function definition
- let farg = e let farg $\mathbf{k}=\mathrm{e}$
- Idea: Every function takes an extra parameter saying where the result goes
- Step 2: A simple expression in tail position should be passed to a continuation instead of returned
- a $\Rightarrow \mathbf{k}$ a
- Assuming a is a constant or variable.

■ "Simple" = "No available function calls."
CPS Transformation

CPS Transformation

- Step 3: Pass the current continuation to every function call in tail position
■ farg \Rightarrow farg \mathbf{k}
■ The function "isn't going to return," so we need to tell it where to put the result.
Step 4: Each function call not in tail position needs to be converted to take a new continuation (containing the old continuation as appropriate)
- op (f arg) \Rightarrow f arg (fun r-> k (op r))
- op represents a primitive operation

■ \mathbf{g} (f arg) \Rightarrow f arg (fun r-> grk)
CPS Transformation

CPS Transformation

- Step 3: Pass the current continuation to every function call in tail position
■ farg \Rightarrow f arg \mathbf{k}
■ The function "isn't going to return," so we need to tell it where to put the result.
- Step 4: Each function call not in tail position needs to be converted to take a new continuation (containing the old continuation as appropriate)
■ op (f arg) \Rightarrow f arg (fun r -> k (op r))
- op represents a primitive operation

■ g (f arg) $\Rightarrow \mathrm{f}$ arg (fun r-> grk)
CPS Transformation

Example

Before:

let rec sum Ist = match Ist with
| [] -> 0
| 0 :: xs -> sum xs
| x :: xs ->
(+) x (sum xs); ;

After:

$$
\text { let rec sumk lst } \mathrm{k}=(* 1 *)
$$

match Ist with

$$
\begin{aligned}
& {[\text {] -> k } 0(* 2 *)} \\
& 0 \because: \text { xs -> sumk xs k }(* 3 *) \\
& x: \because \text { xs -> }(* 4 *)
\end{aligned}
$$

sumk xs (fun r -> k ((+) x r));";

CPS Transformation

Example

Before:

let rec sum Ist = match Ist with
| [] -> 0
| 0 :: xs -> sum xs
| x :: Xs ->
(+) x (sum xs); ;

After:

let rec sumk Ist $\mathbf{k}=\left(* 1^{*}\right)$
match Ist with

$$
\begin{aligned}
& \mid[]->\mathrm{k} 0(* 2 *) \\
& 0:: \text { xs -> sumk xs k }(* 3 *) \\
& \text { x :: xs -> }\left(* 4^{*}\right)
\end{aligned}
$$

sumk xs (fun r -> k ((+)x r)) ${ }^{\prime} ;$

CPS Transformation

Example

Before:

let rec sum Ist = match Ist with
| [] -> 0
| 0 :: xs -> sum xs
| x :: xs ->
(+) x (sum xs); ;

After:

let rec sumk Ist $\mathbf{k}=\left(* 1^{*}\right)$ match Ist with

$$
\begin{aligned}
& \mid[] \text {-> k } 0(* 2 *) \\
& 0:: \text { xs }->\operatorname{sumk} \text { xs k }(* 3 *) \\
& \mid \times:: \text { xs }->(* 4 *) \\
& \quad \text { sumk xs }(\text { fun r }->\mathrm{k}((+) \times r))_{i ;}
\end{aligned}
$$

CPS Transformation

Example

Before:

let rec sum Ist = match Ist with
| [] -> 0
| 0 :: xs -> sum xs
x :: xs ->
(+) x (sum xs); ;

After:

let rec sumk Ist $\mathbf{k}=\left(* 1^{*}\right)$ match Ist with

$$
\begin{aligned}
& \mid[]->\text { k } 0(* 2 *) \\
& 0:: \text { xs -> sumk xs k }(* 3 *) \\
& \mid \times:: \text { xs -> }(* 4 *) \\
& \quad \text { sumk xs }(\text { fun r }->\mathrm{k}((+) \times r))_{i,}
\end{aligned}
$$

Example

Before:

let rec sum Ist = match Ist with
| [] -> 0
0 :: xs -> sum xs
x :: XS ->
(+) x (sum xs); ;

After:

let rec sumk Ist $\mathbf{k}=\left(* 1^{*}\right)$ match Ist with

$$
\begin{aligned}
& \mid[] \text {-> k } 0(* 2 *) \\
& \mid 0:: \text { xs -> sumk xs k }(* 3 *) \\
& \mid x:: \text { xs -> }(* 4 *)
\end{aligned}
$$

sumk xs (fun r-> k ((+) x r));;

Questions so far?

Other Applications

Other Uses for Continuations

- CPS designed to preserve order of evaluation
- Continuations used to express order of evaluation
- Can be used to change order of evaluation
- Implements:
- Exceptions and exception handling
- Co-routines
- (pseudo, aka green) threads

Other Applications

Other Uses for Continuations

- CPS designed to preserve order of evaluation
- Continuations used to express order of evaluation
- Can be used to change order of evaluation
- Implements:
- Exceptions and exception handling
- Co-routines
- (pseudo, aka green) threads

Exceptions - Example

\# exception Zero;; exception Zero
\# let rec mul_aux list = match list with
| [] -> 1
| x : : xs ->
if $x=0$ then raise Zero else x^{*} mul_aux xs;'; $^{\prime}$;
val mul_aux : int list -> int = <fun>

Other Applications

Exceptions - Example

\# exception Zero;; exception Zero
\# let rec mul_aux list = match list with
| []] 1
| x :: xs ->
if $x=0$ then raise Zero else x * mul_aux xs;;;
val mul_aux : int list -> int = <fun>

Other Applications

Exceptions - Example

\# let list_mult list = try mul_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
\# list_mult [3;4;2];;

- : int = 24
\# list mult [7;4;0];i,
- : int = 0
\# mul_aux [7;4;0];;
Exception: Zero.

Other Applications

Exceptions - Example

\# let list_mult list = try mul_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
\# list_mult [3;4;2];;

- : int = 24
\# list_mult [7;4;0];,;
- : int = 0
\# mul_aux [7;4;0];i,
Exception: Zero.

Other Applications

Exceptions - Example

\# let list_mult list = try mul_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
\# list_mult [3;4;2];;

- : int = 24
\# list_mult [7;4;0];;
- : int = 0
\# mul_aux [7;4;0];,;
Exception: Zero.

Other Applications

Exceptions - Example

\# let list_mult list = try mul_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
\# list_mult [3;4;2];;

- : int = 24
\# list_mult [7;4;0];;
- : int = 0
\# mul_aux [7;4;0];;
Exception: Zero.

Other Applications

Exceptions

- When an exception is raised
- The current computation is aborted
- Control is "thrown" back up the call stack until a matching handler is found
- All the intermediate calls waiting for a return values are thrown away

Implementing Exceptions

\# let multkp $(\mathrm{m}, \mathrm{n}) \mathrm{k}=$
let $\mathrm{r}=\mathrm{m}^{*} \mathrm{n}$ in
(print_string "product result: "; print_int r; print_string "\n"; kr); ;
val multkp : int * int -> (int -> 'a) -> 'a = <fun>

Implementing Exceptions

\# let rec mul_aux list k kexcp =
match list with
| [] -> k 1
| x:: xs ->
if $x=0$ then
kexcp 0
else
mul_aux xs (fun r -> multkp (x, r) k) kexcp;;
val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun> \# let list_multk list k = mul_aux list k k;; val list_multk : int list -> (int -> 'a) -> 'a = <fun>

Other Applications

Implementing Exceptions

\# let rec mul_aux list k kexcp =
match list with
| []-> k 1
| x:: xs ->

Exception Handler

if $x=0$ then

kexcp 0 Raise Exception

else
mul_aux xs (fun r -> multkp (x, r) k) kexcp;;
val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun> \# let list_multk list k = mul_aux list k k;; val list_multk : int list -> (int -> 'a) -> 'a = <fun>

Other Applications

Implementing Exceptions

\# let rec mul_aux list k kexcp =
match list with
| []-> k 1
| x:: xs ->
if $x=0$ then
kexcp 0
else
mul_aux xs (fun r -> multkp (x, r) k) kexcp;;
val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun> \# let list_multk list k = mul_aux list k k;; val list_multk : int list -> (int -> 'a) -> 'a = <fun>

Other Applications

Implementing Exceptions

\# list_multk [3;4;2] report;; product result: 2
product result: 8
product result: 24
24

- : unit = ()
\# list_multk [7;4;0] report;;
- : unit = ()

Implementing Exceptions

\# list_multk [3;4;2] report;; product result: 2
product result: 8
product result: 24
24

- : unit = ()
\# list_multk [7;4;0] report;;
0
- : unit = ()

Other Applications

Questions?

Takeaways

■ We saw how to transform functions written in direct style to functions written in continuation-passing style (CPS), which is super useful for compilers and interpreters

- We also saw how to use continuations to implement exceptions-one of many features we can implement with continuations

Next Class

- I will be away! This absence is actually a planned absence.
- I will record the lecture ahead of time and post it for you all to watch.
- I will announce when it is ready.
- There will not be an in-person lecture.
- I will also miss office hours, but I will pay very close attention to Piazza.
- I will post (extra) extra credit today. (Please don't let it distract you from the midterm.)

