
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

Quiz (20 Minutes)

2

■ Please check in before starting
■ Then navigate to https://us.prairietest.com/
■ Close all other tabs
■ Start the quiz when ready
■ Load one question in advance (two open instances)
■ Please run the test scripts before submitting
■ Note that there may be more tests for grading
■ Let us know if you run into any issues
■ Let us know if you’d like to check out

https://us.prairietest.com/

3

 Three Minute Break

Objectives for Today

4

■ Today, we will cover tail recursion a bit more
■ We will focus on examples, capturing the

importance of the accumulator
■ We will use this to lead in to something called

continuation-passing style, which has similar
accumulation behavior, but accumulates the
remaining work to be done rather than values

■ This style, which we’ll cover more next class, is
super useful for compilers and interpreters

5

 Thanks, all, for patience and help!

6

 See Piazza

7

 Questions from last time?

8

 More Tail Recursion

* 9

Tail Recursion

■ Tail Recursion form of Structural
Recursion (recurse on substructures)

■ In tail recursion, first build the
intermediate result, then call the
function recursively

■ Build answer as you go, typically using an
accumulator or auxiliary function

■ Corresponds to folding left (with caveats)

Tail Recursion

* 10

Tail Recursion

■ Tail Recursion form of Structural
Recursion (recurse on substructures)

■ In tail recursion, first build the
intermediate result, then call the
function recursively

■ Build answer as you go, typically using an
accumulator or auxiliary function

■ Corresponds to folding left (with caveats)

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

11

 _
 _

 _

1 +

 2
1 + 0

 1
11

1 +

 3

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

12

 _
 _

 _

1 +

 2
1 + 0

 1
12

1 +

 3

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

13

 _
 _

 _

1 +

 2
1 + 0

 1
13

1 +

 3

Tail Recursion

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 ???
 | [] -> max_so_far
 | (x :: xs) ->
 max_aux xs
 (if x > max_so_far then x else max_so_far)
 in num_neg_aux list ???

* 14

What to do first?

Tail Recursion

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> ???
 | (x :: xs) ->
 ???
r then x else max_so_far)
 in num_neg_aux list ???

* 15

Match!

Tail Recursion

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> ???
 | (x :: xs) ->
 ???
r then x else max_so_far)
 in num_neg_aux list ???

* 16
Tail Recursion

Base case?

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 ???
r then x else max_so_far)
 in num_neg_aux list ???

* 17
Tail Recursion

The accumulated value!

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 ???
r then x else max_so_far)
 in num_neg_aux list ???

* 18
Tail Recursion

Recursive case?

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs ??
Placeholder text
 in num_neg_aux list ???

* 19
Tail Recursion

Recursive call is last.

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs ??
Placeholder text
 in num_neg_aux list ???

* 20
Tail Recursion

How to accumulate (i.e., update curr_neg)?

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list ???

* 21
Tail Recursion

Add 1 if the head is negative;
otherwise change nothing.

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list ???

* 22
Tail Recursion

The real work here happens in the accumulator. But we need
an initial value for that accumulator. What should that be?

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list 0

* 23
Tail Recursion

24

 Questions so far?

25

 Tail recursion with fold_left

26

Tail Recursion by fold_left

let rec fold_left f a list =
 match list with
 | [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left :
 ('a -> 'b -> 'a) ->
 'a ->
 'b list ->
 'a
= <fun>

 b1
 b2

 bn

 f

 a2

 f

 a1
26

 f

 an

…

…
 a

Folding Left

27

Tail Recursion by fold_left

let rec fold_left f a list =
 match list with
 | [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left :
 ('a -> 'b -> 'a) ->
 'a ->
 'b list ->
 'a
= <fun>

 b1
 b2

 bn

 f

 a2

 f

 a1
27

 f

 an

…

…
 a

Folding Left

Argument a is the
accumulated value.

28

Tail Recursion by fold_left

let rec fold_left f a list =
 match list with
 | [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left :
 ('a -> 'b -> 'a) ->
 'a ->
 'b list ->
 'a
= <fun>

 b1
 b2

 bn

 f

 a2

 f

 a1
28

 f

 an

…

…
 a

Folding Left

Operator f does the
actual accumulation!

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc)

let length =
 length_aux list 0

29

 _
 _

 _

1 +

 2
1 + 0

 1
29

1 +

 3

Folding Left

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc)

let length =
 length_aux list 0

30

 _
 _

 _

1 +

 2
1 + 0

 1
30

1 +

 3base case / id

Folding Left

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc)

let length =
 length_aux list 0

31

 _
 _

 _

1 +

 2
1 + 0

 1
31

1 +

 3base case / id

 operator

Folding Left

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc)

let length =
 length_aux list 0

32

 _
 _

 _

1 +

 2
1 + 0

 1
32

1 +

 3base case / id

 operator

recursion (last)

Folding Left

*

Tail Recursion - Length

let length list =
 fold_left (fun acc -> fun _ -> 1 + acc) list 0

33

 _
 _

 _

1 +

 2
1 + 0

 1
33

1 +

 3

base case / id

 operatorrecursion (last)

Folding Left

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list 0
let num_neg list =
 fold_left ?? ?? list

* 34
Folding Left

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list 0
let num_neg list =
 fold_left ?? ?? list

* 35
Folding Left

What is the base case—the
initial accumulated value?

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list 0
let num_neg list =
 fold_left ?? 0 list

* 36
Folding Left

Zero, so that’s what we
pass for the last argument.

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list 0
let num_neg list =
 fold_left ?? 0 list

* 37
Folding Left

What operator do we use to
update the accumulator?

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list 0
let num_neg list =
 fold_left ?? 0 list

* 38
Folding Left

This whole thing here:

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list 0
let num_neg list =
 fold_left (fun r x -> if x < 0 then 1 + r else r) 0 list

* 39
Folding Left

This whole thing here:

So we abstract it into a function:

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
 in num_neg_aux list 0
let num_neg list =
 fold_left (fun x r -> if x < 0 then 1 + r else r) list 0

* 40
Folding Left

Your turn: num_neg – tail recursive

let num_neg list =
 let rec num_neg_aux list curr_neg =
 match list with
 | [] -> curr_neg
 | (x :: xs) ->
 num_neg_aux xs
 (if x < 0 then 1 + curr_neg else curr_neg)
(* Concise, captures essence of accumulation *) list
let num_neg list =
 fold_left (fun x r -> if x < 0 then 1 + r else r) list 0

* 41
Folding Left

42

 Questions so far?

43

 Continuations, Briefly

* 44

■ What if, rather than accumulating values, we
accumulate the work that remains to be done?

■ Then we get these things called continuations.
■ It turns out this is very useful for “non-local”

control flow, like:
■ non-local jumps
■ exceptions
■ general conversion of non-tail calls to tail calls

■ Essentially a higher-order function version of GOTO

Continuations

Continuations, Briefly

* 45

■ What if, rather than accumulating values, we
accumulate the work that remains to be done?

■ Then we get these things called continuations.
■ It turns out this is very useful for “non-local”

control flow, like:
■ non-local jumps
■ exceptions
■ general conversion of non-tail calls to tail calls

■ Essentially a higher-order function version of GOTO

Continuations

Continuations, Briefly

* 46

Continuations

■ Idea: Use functions to represent the control
flow of a program

■ Method: Each procedure takes a function as an
extra argument to which to pass its result;
outer procedure “returns” no result
■ Function receiving the result is called a

continuation
■ Continuation acts as “accumulator” for work

still to be done

Continuations, Briefly

* 47

Continuations

■ Idea: Use functions to represent the control
flow of a program

■ Method: Each procedure takes a function as an
extra argument to which to pass its result;
outer procedure “returns” no result
■ Function receiving the result is called a

continuation
■ Continuation acts as “accumulator” for work

still to be done

Continuations, Briefly

* 48

Continuations

■ Idea: Use functions to represent the control
flow of a program

■ Method: Each procedure takes a function as an
extra argument to which to pass its result;
outer procedure “returns” no result
■ Function receiving the result is called a

continuation
■ Continuation acts as “accumulator” for work

still to be done

Continuations, Briefly

* 49

Continuations

■ Idea: Use functions to represent the control
flow of a program

■ Method: Each procedure takes a function as an
extra argument to which to pass its result;
outer procedure “returns” no result
■ Function receiving the result is called a

continuation
■ Continuation acts as “accumulator” for work

still to be done

Continuations, Briefly

* 50

Continuation Passing Style

■ Continuation Passing Style (CPS): Writing
functions such that all functions calls take a
continuation to which to pass the result, and
return no result

■ CPS is useful as:
■ A compilation technique to implement

non-local control flow (especially useful in
interpreters)

■ A formalization of non-local control flow in
denotational semantics

■ A possible intermediate state in compiling
functional code

Continuations, Briefly

* 51

Continuation Passing Style

■ Continuation Passing Style (CPS): Writing
functions such that all functions calls take a
continuation to which to pass the result, and
return no result

■ CPS is useful as:
■ A compilation technique to implement

non-local control flow (especially useful in
interpreters)

■ A formalization of non-local control flow in
denotational semantics

■ A possible intermediate state in compiling
functional code

Continuations, Briefly

Why CPS?

Reasoning:
■ Explicit order of evaluation
Compilation:
■ Variables/registers for each step of computation
■ Functional to imperative
■ Nice IR on the way to assembly or byte code
Optimization:
■ Tail recursion easy to identify
■ Strict forward recursion becomes tail recursion

(at the expense of building large closures in heap)

* 52
Continuations, Briefly

Why CPS?

Reasoning:
■ Explicit order of evaluation
Compilation:
■ Variables/registers for each step of computation
■ Functional to imperative
■ Nice IR on the way to assembly or byte code
Optimization:
■ Tail recursion easy to identify
■ Strict forward recursion becomes tail recursion

(at the expense of building large closures in heap)

* 53
Continuations, Briefly

Why CPS?

Reasoning:
■ Explicit order of evaluation
Compilation:
■ Variables/registers for each step of computation
■ Functional to imperative
■ Nice IR on the way to assembly or byte code
Optimization:
■ Tail recursion easy to identify
■ Strict forward recursion becomes tail recursion

(at the expense of building large closures in heap)

* 54
Continuations, Briefly

Why CPS?

Reasoning:
■ Explicit order of evaluation
Compilation:
■ Variables/registers for each step of computation
■ Functional to imperative
■ Nice IR on the way to assembly or byte code
Optimization:
■ Tail recursion easy to identify
■ Strict forward recursion becomes tail recursion

(at the expense of building large closures in heap)

* 55
Continuations, Briefly

Other Uses for Continuations

■ Changing order of evaluation
■ Implementing:

■ Exceptions and exception handling
■ Coroutines
■ (pseudo, aka green) threads

* 56
Continuations, Briefly

* 57

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Continuations, Briefly

* 58

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Continuations, Briefly

* 59

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Continuations, Briefly

* 60

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Continuations, Briefly

* 61

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Continuations, Briefly

* 62

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Continuations, Briefly

* 63

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Continuations, Briefly

64

 Questions?

Reminders

65

■ Midterm 1 in CBTF 9/14-9/16—please sign up!
■ I’ll post about the first extra credit on Piazza

very soon this week.
■ All deadlines can be found on course website
■ Use office hours and class forums for help

 Next Class

