
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

Objectives for Today

2

■ On Thursday, we took an in depth look at lists and
recursive functions defined over lists.

■ We also previewed some common higher-order
functions over lists—map and fold.

■ Today, we will look at these higher-order functions
in more detail, looking at the difference between
folding left and folding right.

■ We will also learn about forward recursion and
tail recursion, and how these relate to folding left
and folding right.

Objectives for Today

3

■ On Thursday, we took an in depth look at lists and
recursive functions defined over lists.

■ We also previewed some common higher-order
functions over lists—map and fold.

■ Today, we will look at these higher-order functions
in more detail, looking at the difference between
folding left and folding right.

■ We will also learn about forward recursion and
tail recursion, and how these relate to folding left
and folding right.

4

 Questions from last time?

5

 Forward Recursion

* 6

Forward Recursion

■ Forward Recursion form of Structural
Recursion (recurse on substructures)

■ In forward recursion, first call the
function recursively on all recursive
components, and then build final result

■ Wait until whole structure has been
traversed to start building answer

■ Corresponds to folding right (with caveats)

Forward Recursion

* 7

Forward Recursion

■ Forward Recursion form of Structural
Recursion (recurse on substructures)

■ In forward recursion, first call the
function recursively on all recursive
components, and then build final result

■ Wait until whole structure has been
traversed to start building answer

■ Corresponds to folding right (with caveats)

Forward Recursion

* 8

Forward Recursion

■ Forward Recursion form of Structural
Recursion (recurse on substructures)

■ In forward recursion, first call the
function recursively on all recursive
components, and then build final result

■ Wait until whole structure has been
traversed to start building answer

■ Corresponds to folding right (with caveats)

Forward Recursion

* 9

Forward Recursion

■ Forward Recursion form of Structural
Recursion (recurse on substructures)

■ In forward recursion, first call the
function recursively on all recursive
components, and then build final result

■ Wait until whole structure has been
traversed to start building answer

■ Corresponds to folding right (with caveats)

Forward Recursion

There are two different orders we can fold over
lists in—we’ll see the other one later in class.

* 10

Forward Recursion by fold_right

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

base case / id operator recursion (first)

Forward Recursion

* 11

Forward Recursion by fold_right

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

base case / id

base case / id

 operator

 operator

recursion (first)

recursion (first)

Forward Recursion

* 12

Forward Recursion by fold_right

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

base case / id recursion (first) operator

Forward Recursion

13

Forward Recursion by fold_right

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun>

base case / id recursion (first) operator

Forward Recursion

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun> 14

Forward Recursion by fold_right

 a1
 a2

 an

 f

 b(n-1)

 f

 bn 14

 f

…

…

 b

Forward Recursion

 b1

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun> 15

Forward Recursion by fold_right

 a1
 a2

 an

 f

 b(n-1)

 f

 bn 15

 f

…

…

 b

Forward Recursion

 b1

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun> 16

Forward Recursion by fold_right

 a1
 a2

 an

 f

 b(n-1)

 f

 bn 16

 f

…

…

 b

Forward Recursion

 b1

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun> 17

Forward Recursion by fold_right

 a1
 a2

 an

 f

 b(n-1)

 f

 bn 17

 f

…

…

 b

Forward Recursion

 b1

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun> 18

Forward Recursion by fold_right

 a1
 a2

 an

 f

 b(n-1)

 f

 bn 18

 f

…

…

 b

Forward Recursion

 b1

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun> 19

Forward Recursion by fold_right

 a1
 a2

 an

 f

 b(n-1)

 f

 bn 19

 f

…

…

 b

Forward Recursion

 b1

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun> 20

Forward Recursion by fold_right

 a1
 a2

 an

 f

 b(n-1)

 f

 bn 20

 f

…

…

 b

Forward Recursion

 b1

*

 2
 4

 6

 *

 24
 *

 48
21

 * 1

 6

Forward Recursion by fold_right

let rec multList list =
 match list with
 | [] -> 1
 | x :: xs -> x * multList xs;;

Forward Recursion

*

 2
 4

 6

 *

 24
 *

 48
22

 * 1

 6

Forward Recursion by fold_right

let rec multList list =
 match list with
 | [] -> 1
 | x :: xs -> x * multList xs;;

let multList list =
 List.fold_right
 (fun x p -> x * p)
 list
 1;;

Forward Recursion

*

 _
 _

 _

1 +

 2
1 +

 3
23

1 + 0

 1

Forward Recursion by fold_right

let rec length list =
 match list with
 | [] -> 0
 | _ :: bs -> 1 + length bs;;

Forward Recursion

*

 _
 _

 _

1 +

 2
1 +

 3
24

1 + 0

 1

Forward Recursion by fold_right

let rec length list =
 match list with
 | [] -> 0
 | _ :: bs -> 1 + length bs;;

let length list =
 List.fold_right
 (fun _ r -> 1 + r)
 list
 0;;

Forward Recursion

* 25

Forward Recursion by fold_right

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

val poor_rev : 'a list -> 'a list = <fun>

base case / id operator recursion (first)

Forward Recursion

* 26

Forward Recursion by fold_right

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;

let double_up list =
 List.fold_right (fun x r -> x :: x :: r) list [];;

val double_up : 'a list -> 'a list = <fun>

val poor_rev : 'a list -> 'a list = <fun>

base case / id operator recursion (first)

base case / id operatorrecursion (first)

Forward Recursion

* 27

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> ?) list1 ?;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] = [4; 5; 6; 1; 2; 3]
append [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] = [1; 2]

Forward Recursion

* 28

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> ?) list1 ?;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] = [4; 5; 6; 1; 2; 3]
append [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] = [1; 2]

Forward Recursion

* 29

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> ?) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] = [4; 5; 6; 1; 2; 3]
append [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] = [1; 2]

Forward Recursion

* 30

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> ?) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] = [4; 5; 6; 1; 2; 3]
append [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] = [1; 2]

Forward Recursion

* 31

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> a :: ?) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] = [4; 5; 6; 1; 2; 3]
append [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] = [1; 2]

Forward Recursion

* 32

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> a :: ?) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] = [4; 5; 6; 1; 2; 3]
append [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] = [1; 2]

Forward Recursion

* 33

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> a :: ?) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

4 :: append [5; 6] [1; 2; 3] = [4; 5; 6; 1; 2; 3]
append [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] = [1; 2]

Forward Recursion

* 34

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> a :: r) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

4 :: append [5; 6] [1; 2; 3] = [4; 5; 6; 1; 2; 3]
append [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] = [1; 2]

Forward Recursion

* 35

Forward Recursion by fold_right

let append list1 list2 = match list1 with
 List.fold_right (fun a r -> a :: r) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

Forward Recursion

* 36

Forward Recursion

■ Forward Recursion form of Structural
Recursion (recurse on substructures)

■ In forward recursion, first call the
function recursively on all recursive
components, and then build final result

■ Wait until whole structure has been
traversed to start building answer

■ Corresponds to folding right (with caveats)

Forward Recursion

37

 Questions so far?

Forward Recursion

38

 Tail Recursion

* 39

Tail Recursion

■ Tail Recursion form of Structural
Recursion (recurse on substructures)

■ In tail recursion, first build the
intermediate result, then call the
function recursively

■ Build answer as you go, typically using an
accumulator or auxiliary function

■ Corresponds to folding left (with caveats)

Tail Recursion

* 40

Tail Recursion

■ Tail Recursion form of Structural
Recursion (recurse on substructures)

■ In tail recursion, first build the
intermediate result, then call the
function recursively

■ Build answer as you go, typically using an
accumulator or auxiliary function

■ Corresponds to folding left (with caveats)

Tail Recursion

* 41

Tail Recursion

■ Tail Recursion form of Structural
Recursion (recurse on substructures)

■ In tail recursion, first build the
intermediate result, then call the
function recursively

■ Build answer as you go, typically using an
accumulator or auxiliary function

■ Corresponds to folding left (with caveats)

Tail Recursion

Soon we’ll see the other direction we can fold in.

* 42

Tail Recursion

■ A recursive program is tail recursive if all
recursive calls are tail calls

■ Tail recursive programs may be optimized
to be implemented as loops, thus
removing the function call overhead for
the recursive calls

Tail Recursion

let rec length list =
 match list with
 | [] -> 0
 | _ :: bs -> 1 + length bs;;

*

 _
 _

 _

1 +

 2
1 +

 3
43

1 + 0

 1

Forward Recursion - Length

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

44

 _
 _

 _

1 +

 2
1 + 0

 1
44

1 +

 3

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

45

 _
 _

 _

1 +

 2
1 + 0

 1
45

1 +

 3

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

46

 _
 _

 _

1 +

 2
1 + 0

 1
46

1 +

 3

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

47

 _
 _

 _

1 +

 2
1 + 0

 1
47

1 +

 3

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

48

 _
 _

 _

1 +

 2
1 + 0

 1
48

1 +

 3

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

49

 _
 _

 _

1 +

 2
1 + 0

 1
49

1 +

 3

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

50

 _
 _

 _

1 +

 2
1 + 0

 1
50

1 +

 3

Tail Recursion

let rec length list =
 match list with
 | [] -> 0
 | _ :: bs -> 1 + length bs;;

*

 _
 _

 _

1 +

 2
1 +

 3
51

1 + 0

 1

Forward Recursion - Length

Tail Recursion

*

Tail Recursion - Length

let rec length_aux list acc =
 match list with
 | [] -> acc
 | _ :: bs -> length_aux bs (1 + acc);;

let length =
 length_aux list 0;;

52

 _
 _

 _

1 +

 2
1 + 0

 1
52

1 +

 3

Tail Recursion

53

 Questions so far?

Forward Recursion

54

 Forward vs. Tail Recursion: Runtime

* 55

Forward vs. Tail Recursion

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;

let rec rev_aux list revlist =
 match list with
 | [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

What is the runtime of each function?
Runtime

* 56

Forward vs. Tail Recursion

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;

let rec rev_aux list revlist =
 match list with
 | [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

What is the runtime of each function?
Runtime

* 57

Forward vs. Tail Recursion

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;

let rec rev_aux list revlist =
 match list with
 | [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

What is the runtime of each function?
Runtime

* 58

Forward vs. Tail Recursion

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;

let rec rev_aux list revlist =
 match list with
 | [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

What is the runtime of each function?
Runtime

* 59

Forward vs. Tail Recursion

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;

let rec rev_aux list revlist =
 match list with
 | [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

What is the runtime of each function?
Runtime

* 60

Forward vs. Tail Recursion

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;

let rec rev_aux list revlist =
 match list with
 | [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

What is the runtime of each function?
Runtime

* 61

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 62

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 63

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 64

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 65

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 66

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 67

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 68

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 69

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 70

Forward vs. Tail Recursion

■ poor_rev [1;2;3] =
■ (poor_rev [2;3]) @ [1] =
■ ((poor_rev [3]) @ [2]) @ [1] =
■ (((poor_rev []) @ [3]) @ [2]) @ [1] =
■ (([] @ [3]) @ [2]) @ [1]) =
■ ([3] @ [2]) @ [1] =
■ (3:: ([] @ [2])) @ [1] =
■ [3;2] @ [1] =
■ 3 :: ([2] @ [1]) =
■ 3 :: (2:: ([] @ [1])) = [3; 2; 1]

Runtime

* 71

Forward vs. Tail Recursion

■ rev [1;2;3] =
■ rev_aux [1;2;3] [] =
■ rev_aux [2;3] [1] =
■ rev_aux [3] [2;1] =
■ rev_aux [] [3;2;1] = [3;2;1]

Runtime

* 72

Forward vs. Tail Recursion

■ rev [1;2;3] =
■ rev_aux [1;2;3] [] =
■ rev_aux [2;3] [1] =
■ rev_aux [3] [2;1] =
■ rev_aux [] [3;2;1] = [3;2;1]

Runtime

* 73

Forward vs. Tail Recursion

■ rev [1;2;3] =
■ rev_aux [1;2;3] [] =
■ rev_aux [2;3] [1] =
■ rev_aux [3] [2;1] =
■ rev_aux [] [3;2;1] = [3;2;1]

Runtime

* 74

Forward vs. Tail Recursion

■ rev [1;2;3] =
■ rev_aux [1;2;3] [] =
■ rev_aux [2;3] [1] =
■ rev_aux [3] [2;1] =
■ rev_aux [] [3;2;1] = [3;2;1]

Runtime

* 75

Forward vs. Tail Recursion

■ rev [1;2;3] =
■ rev_aux [1;2;3] [] =
■ rev_aux [2;3] [1] =
■ rev_aux [3] [2;1] =
■ rev_aux [] [3;2;1] = [3;2;1]

Runtime

76

 Folding: Right vs. Left

77

Forward Recursion by fold_right

let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

val fold_right :
 ('a -> 'b -> 'b) ->
 'a list ->
 'b ->
 'b
= <fun>

 a1
 a2

 an

 f

 b(n-1)

 f

 bn
77

 f

 b1

…

…

 b

Folding

78

Tail Recursion by fold_left

let rec fold_left f a list =
 match list with
 | [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left :
 ('a -> 'b -> 'a) ->
 'a ->
 'b list ->
 'a
= <fun>

 b1
 b2

 bn

 f

 a2

 f

 a1
78

 f

 an

…

…
 a

Folding

* 79

Folding Left vs. Folding Right

let rec fold_left f a list =
 match list with
 | [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
fold_left f a [x1; x2;…;xn] = f (… (f (f a x1) x2)…) xn
let rec fold_right f list b =
 match list with
 | [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

Folding

* 80

Folding Left vs. Folding Right

 b1
 b2

 bn

 f

 a2

 f

 a1

 f

 an

…

…
 a

80

 a1
 a2

 an

 f

 b(n-1)

 f

 bn
80

 f

 b1

…

…

 b

Folding

* 81

Folding

■ Can replace recursion by fold_right in any
forward primitive recursive definition
■ Primitive recursive means it recurses only on

immediate subcomponents of recursive data
structure (like the tail of a list)

■ Can replace recursion by fold_left in any tail
primitive recursive definition

Folding

82

 Questions?

83

Next Class:
Continuation-Passing Style

Reminders

84

■ Quiz 2 on MP3 next Tuesday
■ Midterm 1 in CBTF 9/14-9/16—please sign up!
■ All deadlines can be found on course website
■ Use office hours and class forums for help
■ Please thank Elsa again for covering <3

 Next Class

