
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

2

 Quiz

Objectives for Today

3

■ On Thursday, you learned about environments
and closures, and how they track values in OCaml

■ This was motivating what actually happens when
you evaluate an expression in OCaml

■ We’re almost there! But we omitted a lot of
important things we need to get there

■ Today, we’ll cover the remaining cool things
we need to get to evaluation

■ As before, this captures concepts present in many
languages, so it is pretty broadly useful

■ Though there are some language-specific quirks

4

 Piazza: On optimizing closures

5

 Questions about environments?

6

 More about OCaml

* 7

Recall: Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second
 More OCaml

* 8

Recall: Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

■ What is the value of add_three?
■ Let ρadd_three be the environment before the

declaration
■ Value: <x ->fun y -> (fun z -> x + y + z), ρadd_three

>

 More OCaml

* 9

Recall: Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

■ What is the value of add_three?
■ Let ρadd_three be the environment before the

declaration
■ Value: <x ->fun y -> (fun z -> x + y + z), ρadd_three

>

 More OCaml

* 10

Recall: Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

■ What is the value of add_three?
■ Let ρadd_three be the environment before the

declaration
■ Value: <x ->fun y -> (fun z -> x + y + z), ρadd_three

>

 More OCaml

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16

* 11

Partial Application

 More OCaml

* 12

Partial Application

let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16

 More OCaml

* 13

Partial Application

let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16

 More OCaml

* 14

Partial Application

let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16

 More OCaml

Partial application also called sectioning

* 15

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 16

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 17

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 18

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 19

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 20

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 21

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 22

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 23

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = (fun f x -> f (f (f x))) plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 24

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = (fun x ->
 plus_two (plus_two (plus_two x)));;
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 25

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 26

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let plus_six = thrice plus_two;;
val plus_six : int -> int = <fun>
plus_six 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 27

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let plus_six = thrice plus_two;;
val plus_six : int -> int = <fun>
plus_six 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 28

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let plus_six = thrice plus_two;;
val plus_six : int -> int = <fun>
plus_six 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

* 29

Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let plus_six = thrice plus_two;;
val plus_six : int -> int = <fun>
plus_six 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

 More OCaml

30

 Questions so far?

 More OCaml

Tuples as Values

// ρ1 = {c → 4, test → 3.7}
let s = (5, "hi", 3.2);;
val s : int * string * float = (5, "hi", 3.2)
// ρ2 = {s → (5, "hi", 3.2), c → 4, test → 3.7}

* 31
 More OCaml

Tuples as Values

// ρ1 = {c → 4, test → 3.7}
let s = (5, "hi", 3.2);;
val s : int * string * float = (5, "hi", 3.2)
// ρ2 = {s → (5, "hi", 3.2), c → 4, test → 3.7}

* 32
 More OCaml

Tuples as Values

// ρ1 = {c → 4, test → 3.7}
let s = (5, "hi", 3.2);;
val s : int * string * float = (5, "hi", 3.2)
// ρ2 = {s → (5, "hi", 3.2), c → 4, test → 3.7}

* 33
 More OCaml

Tuples as Values

// ρ1 = {c → 4, test → 3.7}
let s = (5, "hi", 3.2);;
val s : int * string * float = (5, "hi", 3.2)
// ρ2 = {s → (5, "hi", 3.2), c → 4, test → 3.7}

* 34
 More OCaml

Functions on Tuples

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;
- : int = 7
let double x = (x, x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

* 35
 More OCaml

Functions on Tuples

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;
- : int = 7
let double x = (x, x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

* 36
 More OCaml

Functions on Tuples

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;
- : int = 7
let double x = (x, x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

* 37
 More OCaml

Functions on Tuples

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;
- : int = 7
let double x = (x, x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

* 38
 More OCaml

Functions on Tuples

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;
- : int = 7
let double x = (x, x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

* 39
 More OCaml

40

 Currying

* 41

Curried vs Uncurried

■ Recall:
let add_three u v w = u + v + w;;
val add_three : int -> int -> int -> int = <fun>
■ How does it differ from:
let add_triple (u, v, w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>
■ add_three is curried;
■ add_triple is uncurried

Currying

* 42

Curried vs Uncurried

■ Recall:
let add_three u v w = u + v + w;;
val add_three : int -> int -> int -> int = <fun>
■ How does it differ from:
let add_triple (u, v, w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>
■ add_three is curried;
■ add_triple is uncurried

Currying

* 43

Curried vs Uncurried

■ Recall:
let add_three u v w = u + v + w;;
val add_three : int -> int -> int -> int = <fun>
■ How does it differ from:
let add_triple (u, v, w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>
■ add_three is curried;
■ add_triple is uncurried

Currying

One argument at a time

* 44

Curried vs Uncurried

■ Recall:
let add_three u v w = u + v + w;;
val add_three : int -> int -> int -> int = <fun>
■ How does it differ from:
let add_triple (u, v, w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>
■ add_three is curried;
■ add_triple is uncurried

Currying

* 45

Curried vs Uncurried

■ Recall:
let add_three u v w = u + v + w;;
val add_three : int -> int -> int -> int = <fun>
■ How does it differ from:
let add_triple (u, v, w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>
■ add_three is curried;
■ add_triple is uncurried

Currying

Tuple, all at once

* 46

Curried vs Uncurried

add_triple (6, 3, 2);;
- : int = 11
add_triple 5 4;;
Characters 0-10:
 add_triple 5 4;;
 ^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;'
fun x -> add_triple (5, 4, x);;
: int -> int = <fun>

Currying

* 47

Curried vs Uncurried

add_triple (6, 3, 2);;
- : int = 11
add_triple 5 4;;
Characters 0-10:
 add_triple 5 4;;
 ^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;'
fun x -> add_triple (5, 4, x);;
: int -> int = <fun>

Currying

* 48

Curried vs Uncurried

add_triple (6, 3, 2);;
- : int = 11
add_triple 5 4;;
Characters 0-10:
 add_triple 5 4;;
 ^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;'
fun x -> add_triple (5, 4, x);;
: int -> int = <fun>

Currying

49

 Questions so far?

Currying

50

 Back to OCaml

Pattern Matching with Tuples

// ρ1 = {s → (5, "hi", 3.2),
 c → 4, a → 1, b → 5}
let (a, b, c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2

* 51
 More OCaml

Pattern Matching with Tuples

// ρ1 = {s → (5, "hi", 3.2),
 c → 4, a → 1, b → 5}
let (a, b, c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2

* 52
 More OCaml

Pattern Matching with Tuples

// ρ1 = {s → (5, "hi", 3.2),
 c → 4, a → 1, b → 5}
let (a, b, c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2

* 53
 More OCaml

Pattern Matching with Tuples

// ρ1 = {s → (5, "hi", 3.2),
 c → 4, a → 1, b → 5}
let (a, b, c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2
// ρ2 = {a → 5, b →"hi", c → 3.2,
 s → (5, "hi", 3.2)}

* 54
 More OCaml

Pattern Matching with Tuples

// ρ1 = {s → (5, "hi", 3.2),
 c → 4, a → 1, b → 5}
let a, b, c = s;; (* can omit parens *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2
// ρ2 = {a → 5, b →"hi", c → 3.2,
 s → (5, "hi", 3.2)}

* 55
 More OCaml

Nested Tuples

(* Tuples can be nested *)
let d = ((1, 4, 62), ("bye", 15), 73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)
(* Patterns can be nested *)
let (p, (st, _), _) = d;;
val p : int * int * int = (1, 4, 62)
val st : string = "bye"

* 56
 More OCaml

Nested Tuples

(* Tuples can be nested *)
let d = ((1, 4, 62), ("bye", 15), 73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)
(* Patterns can be nested *)
let (p, (st, _), _) = d;;
val p : int * int * int = (1, 4, 62)
val st : string = "bye"

* 57
 More OCaml

Nested Tuples

(* Tuples can be nested *)
let d = ((1, 4, 62), ("bye", 15), 73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)
(* _ matches all, but binds nothing *)
let (p, (st, _), _) = d;;
val p : int * int * int = (1, 4, 62)
val st : string = "bye"

* 58
 More OCaml

59

 Closures map from Patterns

60

■ A closure is a pair of:
■ an environment, and
■ an association mapping:

■ a sequence of variables (input variables) to
■ an expression (the function body),

■ written:

 f → < (v1,…,vn) → exp, ρf >

■ where ρf is the environment in effect when f is
defined (if f is a simple function).

Last Time: Defining Closures

Closures & Patterns

We lacked the
vocabulary to say
what this really is.

61

■ A closure is a pair of:
■ an environment, and
■ an association mapping:

■ a pattern of variables (input variables) to
■ an expression (the function body),

■ written:

 f → < (v1,…,vn) → exp, ρf >

■ where ρf is the environment in effect when f is
defined (if f is a simple function).

This Time: Defining Closures

Closures & Patterns

62

Reminder: Closure for plus_x

■ When plus_x was defined, we had environment:

 ρplus_x = {…, x → 12, …}

■ Recall: let plus_x y = y + x
 is really let plus_x = fun y -> y + x

■ Closure for fun y -> y + x:

<y → y + x, ρplus_x >

■ Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

Closures & Patterns

63

Reminder: Closure for plus_x

■ When plus_x was defined, we had environment:

 ρplus_x = {…, x → 12, …}

■ Recall: let plus_x y = y + x
 is really let plus_x = fun y -> y + x

■ Closure for fun y -> y + x:

<y → y + x, ρplus_x >

■ Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

Closures & Patterns

New: Closure for plus_pair

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
■ Assume ρplus_pair was the environment just before

plus_pair defined

■ Closure for fun (n,m) -> n + m:

<(n,m) → n + m, ρplus_pair>

■ Environment just after plus_pair defined:

{ plus_pair → <(n,m) → n + m, ρplus_pair > } +
ρplus_pair

* 64
Closures & Patterns

New: Closure for plus_pair

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
■ Assume ρplus_pair was the environment just before

plus_pair defined

■ Closure for fun (n,m) -> n + m:

<(n,m) → n + m, ρplus_pair>

■ Environment just after plus_pair defined:

{ plus_pair → <(n,m) → n + m, ρplus_pair > } +
ρplus_pair

* 65
Closures & Patterns

New: Closure for plus_pair

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
■ Assume ρplus_pair was the environment just before

plus_pair defined

■ Closure for fun (n,m) -> n + m:

<(n,m) → n + m, ρplus_pair>

■ Environment just after plus_pair defined:

{ plus_pair → <(n,m) → n + m, ρplus_pair > } +
ρplus_pair

* 66
Closures & Patterns

67

 Questions so far?

Closures & Patterns

68

 Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 69

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 70

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 71

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 72

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 73

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 74

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 75

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 76

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 77

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause

Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 78

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause
Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

* 79

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause
Use first matching clause

Match Expressions

Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>
triple_to_pair (0, 5, 0);;

* 80

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause
Use first matching clause

Match Expressions

What is the result?
Pattern Matching

let triple_to_pair triple =

 match triple with

 | (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>
triple_to_pair (0, 5, 0);;
- : int * int = (5, 0)

81

Each clause: pattern on
left, expression on right

Each x, y has scope of
only its clause
Use first matching clause

Match Expressions

Pattern Matching

82

 Questions?

Takeaways

83

■ We saw some great language features, like:
■ tuples,
■ patterns,
■ pattern matching, and
■ partial application.

■ Currying gets us between a function that takes a
tuple as an argument, and a function that takes its
arguments one at a time. The latter can be partially
applied; the former cannot be!

■ Closures map from patterns.

84

Next Class:
Evaluating expressions in OCaml
(but actually), and more

Reminder: Also Next Class

85

■ WA1 is due on Thursday
■ This is worth points!
■ Please do this!

■ MP2 due next Tuesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help

 Next Class

