Programming Languages and
Compilers (CS 421)

i

o Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/15/22 1

‘ Natural Semantics

= Aka Structural Operational Semantics, aka
“Big Step Semantics”

= Provide value for a program by rules and
derivations, similar to type derivations

= Rule conclusions look like
(C,m)Um’
or
(E,m) v

11/15/22 2

‘ Simple Imperative Programming Language

» [e Identifiers
s Ve Numerals
m Bii=true | false | B& B| Bor B| not B
| E<FE| E=F
« Ex=N/|I|E+E|E*E]E-E]-E](E)
wn Ci=skip| GC| I[:=E
| if Bthen Celse Cfi | while Bdo Cod

11/15/22 3

;‘ Natural Semantics of Atomic Expressions

= Identifiers: (Z,m) U m(1)

= Numerals are values: (N,m) U &

= Booleans: (true,m) U true
(false ,m) U false

11/15/22 4

‘ Booleans:

(B, m) | false
(B& B’, m)\ false

(B, m)U true (B, m)l b
B& B, m)U b

(B, m)l false (B, m)U b
(Bor B, m)l b

(B, m) U true
(Bor B’, m) | true

(B, m) |l false
(not B, m) U true

(B, m)\ true
(not B, m) U false

11/15/22 5

‘ Relations

EmiUu (E,miV U~V=0p

(E~E, mUb

= By U ~ V = b, we mean does (the meaning
of) the relation ~ hold on the meaning of U
and V

= May be specified by a mathematical
expression/equation or rules matching ¢ and
v

11/15/22 6

‘ Arithmetic Expressions

(Emiu (E,miVv UogpV=nN
(EopE,,m)U N

where Nis the specified value for U op V

11/15/22

‘ Commands

Skip: (skip, m) U m

Assignment: (Em)U v
(F=Em) U m[I <-- V] (={I->V}+m)

cmim (¢ ,mYIm”’
cc,mim’

Sequencing:

11/15/22 8

‘ If Then Else Command

(Bm) U true (Cm) U m’
(if Bthen Celse C’fi, m) I m’

(Bm) U false (C’,m)U m’
(if Bthen Celse C’ fi, m) U m’

11/15/22

‘ While Command

(Bm) U false
(while Bdo Cod, m) U m

(B,m)Utrue (Cm)Um’ (while Bdo Cod, m” YUm’’

(while Bdo Cod, m) U m”’

11/15/22 10

‘ Example: If Then Else Rule

(if x> 5theny:=2 + 3 else y:=3 + 4fi,
x->7) U2

11/15/22

1

‘ Example: If Then Else Rule

(x> 5, {x->7)l?
(if x >5theny:=2 + 3 else y:=3 + 4fi,
x->7nl 2

11/15/22 12

‘ Example: Arith Relation

?>7?=7
x,{x->7D0? (5,{x->7)U?
(x> 5, {x->7)J?
(if x> 5theny:=2 + 3 elsey:=3 + 4fi,
x->7) U7

11/15/22 13

‘ Example: Identifier(s)

7 > 5 = true
xAx->7W7 (54{x->71HU5
(x> 5, {x->7)U?
(if x >5theny:=2 + 3elsey:=3 + 4fi,
x->7p U7

11/15/22 14

‘ Example: Arith Relation

7 >5 = true
x,{x->7M)7 (54x->7})U5
(x > 5, {x -> 7})ltrue
(ifx >5theny:=2 + 3elsey:=3 + 4fi,
x->7p U2

11/15/22 15

‘ Example: If Then Else Rule

7 >5 =true

xx->7O7 (5, {x->71)U5 (y:i=2+3,{x>7}
(x > 5, {x -> 7})ltrue Uz
(if x >5theny:=2 + 3 else y:=3 + 4fj,
x->7) 02

11/15/22 16

‘ Example: Assignment

7 > 5 = true (2+3, {x->7)U?
xAx->7W7 (5 {x->71U5 (yi= 2+ 3, {x> 7}
(x > 5, {x -> 7})true U»
(if x> 5theny:=2 + 3 else y:=3 + 4fi,

x->7) U2

11/15/22 17

‘ Example: Arith Op
2+2=7?

Q{x->7DU? (3 {x->7}) U2

7 > 5 = true (2+3, {x->7)?
xx->7W7 (5{x->71)U5 (yi= 2+ 3, {x-> 7}
(x > 5, {x -> 7})true U2

(if x >5theny:=2 + 3 else y:=3 + 4fi,
x->7) U2

11/15/22 18

‘ Example: Numerals
2+3=5

2, {x->7HU2 (34{x->7}) U3

7 > 5 = true (2+3, {x->7)U?
xAx->7W7 (5{x->7HU5 (y:i=2+ 3, {x-> 7}
(x > 5, {x -> 7})ltrue U2
(if x> 5theny:=2 + 3 elsey:=3 + 4fi,

x->73) 172

11/15/22 19

‘ Example: Arith Op
2+3=5

Q{x->7HU2 34x->7}) U3

7 > 5 = true (2+3, {x->7)U5
xAx->7W7 (5{x->7})U5 (yi=2+3, {x>7}
(x > 5, {x -> 7})true U?
(if x> 5theny:=2 + 3 elsey:=3 + 4fi,

x->7)U 2

11/15/22 20

‘ Example: Assignment
2+3=5

(2 {x->7NU2 (3, {x->7}) U3

7 > 5 = true (2+3, {x->7)U5

xx->7W7 (5 {x->71U5 (yi=2+3,{x>7}
(x > 5, {x -> 7})Utrue U {x->7, y->5}
(ifx>5theny:=2 + 3 elsey:=3 + 4fj,
{x->7)U?

11/15/22 21

‘ Example: If Then Else Rule

2+3=5
2,{x->7VW2 (3,{x->7}) U3

7 > 5 = true (2+3, {x->7)U5
xx->7O7 (5, {x->71)U5 (yi=2+3, {x>7}
(x > 5, {x -> 7})true U {x->7, y->5}
(if x >5theny:=2 + 3 else y:=3 + 4fj,

{x->7) U {x->7, y->5}

11/15/22 22

‘ Let in Command

(Em) W (CmlI<-)) U m’
(lete7=FinCmim’’

Where m”’ (y) = m’ () for y= I'and
m’’ (D) = m(J) if m(1) is defined,
and m’’ (1) is undefined otherwise

11/15/22 23

‘ Example

(x{x->51) U5 (3{x->5) U3

(x+3,{x->5}) U 8
(5{x->17) U5 (x:=x+3,{x->5}) U {x->8}
(let x = 5in (x:=x+3), {x -> 17}) U ?

11/15/22 24

‘ Example

(x,{x->5) U5 (3,{x->5}) U 3

(x+3,{x->5}) U 8

(5{x->17) U5 (x:=x+3,{x->5}) U {x->8}

(let x = 5in (x:=x+3), {x -> 17} | {x->17}

11/15/22 25

‘ Comment

= Simple Imperative Programming Language
introduces variables /implicitly through
assignment

= The let-in command introduces scoped
variables explictly

= Clash of constructs apparent in awkward
semantics

11/15/22 26

Interpretation Versus Compilation

= A compiler from language L1 to language
L2 is a program that takes an L1 program
and for each piece of code in L1 generates a
piece of code in L2 of same meaning

= An interpreter of L1 in L2 is an L2 program
that executes the meaning of a given L1
program

= Compiler would examine the body of a loop
once; an interpreter would examine it every
time the loop was executed

11/15/22 27

‘ Interpreter

= An Interpreter represents the operational
semantics of a language L1 (source
language) in the language of implementation
L2 (target language)

= Built incrementally
= Start with literals
= Variables
= Primitive operations
= Evaluation of expressions
= Evaluation of commands/declarations

11/15/22 28

Interpreter

= Takes abstract syntax trees as input
= In simple cases could be just strings
= One procedure for each syntactic category
(nonterminal)
= eg one for expressions, another for commands
= If Natural semantics used, tells how to
compute final value from code
= If Transition semantics used, tells how to
compute next “state”
= To get final value, put in a loop

11/15/22 29

‘ Natural Semantics Example

= compute_exp (Var(v), m) = look_up v m
= compute_exp (Int(n), _) = Num (n)
= compute_com(IfExp(b,c1,c2),m) =
if compute_exp (b,m) = Bool(true)
then compute_com (c1,m)
else compute_com (c2,m)

11/15/22 30

‘ Natural Semantics Example

= compute_com(While(b,c), m) =
if compute_exp (b,m) = Bool(false)
then m
else compute_com
(While(b,c), compute_com(c,m))

= May fail to terminate - exceed stack limits
m Returns no useful information then

11/15/22 31

‘ Transition Semantics

= Form of operational semantics

= Describes how each program construct transforms
machine state by transitions

= Rules look like
(C, my->(C,m’) or (Cm)-->m’
= C C’is code remaining to be executed

= m, m’ represent the
state/store/memory/environment

= Partial mapping from identifiers to values
= Sometimes m (or C) not needed
= Indicates exactly one step of computation

11/15/22 32

‘ Expressions and Values

= C C’ used for commands; £, £’ for
expressions; U, V/for values

= Special class of expressions designated as
values

= Eg 2, 3 are values, but 2+3 is only an
expression

= Memory only holds values
= Other possibilities exist

11/15/22 33

‘ Evaluation Semantics

= Transitions successfully stops when E/Cis a
value/memory

= Evaluation fails if no transition possible, but
not at value/memory

= Value/memory is the final meaning of
original expression/command (in the given
state)

= Coarse semantics: final value / memory
= More fine grained: whole transition sequence

11/15/22 34

‘ Simple Imperative Programming Language

» [e Identifiers

» Ve Numerals

m Bi:=true | false | B& B| Bor B|not B | £
<E|E=E

w E=N|I/E+EJE*XEJ/E-E]-E

s Cii=skip| GC| I::= E
| if Bthen Celse Cfi | while Bdo Cod

11/15/22 35

‘ Transitions for Expressions

= Numerals are values

= Boolean values = {true, false}

= Identifiers: (Lm) --> (mM(1), m)

11/15/22 36

‘ Boolean Operations:

= Operators: (short-circuit)
(false & B, m) --> (false,m) (B m)-->(B% m)
(true & B m)-->(Bm) (B&B’, m)-->(B"& B’, m)

(true or B, m) --> (true,m) (B m)--> (B% m)
(false or B m) --> (Bm) (Bor B’, m)-->(B”or B',m)
(not true, m) --> (false,m) (B m)--> (B, m)
(not false, m) --> (true,m) (not B, m) --> (not B’, m)

11/15/22 37

‘ Relations

(€, m)--> (E"",m)
(E~E’', m)-->(E'"~E’,m)

(£, m) --> (E,m)
(V~E m)-->(V~E',m)

(U~ V, m) --> (true,m) or (false,m)
depending on whether U ~ V/holds or not

11/15/22 38

‘ Arithmetic Expressions

(E m) > (E"",m)
(EopE', m)--> (E"" op E’,m)

(E m) --> (E’,m)
(Vop E, m)--> (Vop E',m)

(Uop V, m) -->(N,m) where Nis the
specified value for U op V

11/15/22 39

‘ Commands - in English

= skip means done evaluating

= When evaluating an assignment, evaluate the
expression first

= If the expression being assigned is already a
value, update the memory with the new value for
the identifier

= When evaluating a sequence, work on the first
command in the sequence first

= If the first command evaluates to a new memory
(ie completes), evaluate remainder with new
memory

11/15/22 40

‘ Commands

(skip, m) --> m
(E,m) > (E°,m)
(L:=Em) --> (L:=E’,m)
(L:=Vm) --> mI <-- V]

(Gm) > (Cm’) (Gm) > m’
(G ¢, m)--> (C7Cm) (GC, m) > (C;m’)

11/15/22 41

‘ If Then Else Command - in English

= If the boolean guard in an if_then_else
is true, then evaluate the first branch

= If it is false, evaluate the second branch

= If the boolean guard is not a value,
then start by evaluating it first.

11/15/22 42

‘ If Then Else Command

(if true then Celse C’ fi, m) --> (C, m)
(if false then Celse C’ fi, m) --> (C’, m)
(Bm) --> (B’,m)

(if Bthen Celse C’ fi, m)
--> (if B’ then Celse C’ fi, m)

11/15/22 43

‘ What should while transition to?

(whileBdoCod, m) > ?

11/17/22 44

‘ Wrong! BAD

(B, m) > (B, m)

(while B do C od, m) -=> (while B’ do C od, m)

11/15/22 45

‘ While Command

(while Bdo Cod, m) -->
(if Bthen G while Bdo Cod else skip fi, m)

In English: Expand a While into a test of the boolean
guard, with the true case being to do the body
and then try the while loop again, and the false
case being to stop.

11/15/22 46

‘ Example Evaluation

» First step:

(f x >5theny:=2 + 3 elsey:=3 + 4fi,
{x->7})

-->7?

11/15/22 47

‘ Example Evaluation

» First step:

x>5{x->7})->7?
(ifx>5theny:=2 + 3 else y:=3 + 4fi,
{x->7})

-->7?

11/15/22 48

‘ Example Evaluation

= First step:
XA{x->7}) —->(7,{x->7})
x>5,{x->7})-->7?
(f x> 5theny:=2 + 3elsey:=3 + 4fi,
{x->73)

->7?

11/15/22 49

‘ Example Evaluation

= First step:
Xx->7}) > (7,{x->7})
x>5,{x->7})-->({7>5,{x->7})
(ifx >5theny:=2 + 3 elsey:=3 + 4fij,
{x->7})

->7?

11/15/22 50

‘ Example Evaluation

= First step:

XA{x->7}) > (7,{x->7})
x>5,{x->7})-->({7>5,{x->7})
(f x >5theny:=2 + 3 else y:=3 + 4fij,
{x->7})

--> (if 7 > 5theny:=2 + 3 else y:=3 + 4fi,
{x->7})

11/15/22 51

‘ Example Evaluation

= Second Step:
(7 > 5, {x->7}) --> (true, {x -> 7})
(if 7> 5theny:=2 + 3 else y:=3 + 4fj,
{x->7})
--> (if true then y:=2 + 3 else y:=3 + 4 fi,
{x->7})

= Third Step:
(if true then y:=2 + 3 else y:=3 + 4 fi, {x -> 7})
-=>(y:=2+3, {x->7})

11/15/22 52

‘ Example Evaluation

= Fourth Step:
(243, {x->7}) --> (5, {x -> 7})
(y:=243, {x->7}) --> (y:=5, {x->73})

. Fifth Step:
(y:=5, {x->7}) --> {y > 5,x-> 7}

11/15/22 53

‘ Example Evaluation

. Bottom Line:

(ifx >5theny:=2 + 3 else y:=3 + 4fi,
{x->7})

--> (if 7 > 5theny:=2 + 3 else y:=3 + 4fj,
{x->7})

-->(if true then y:=2 + 3 else y:=3 + 4fi,
{x->7})
-=>(y:=243, {x->7})

--> (y:=5, {x->7}) > {y->5,x->7}

11/15/22 54

‘ Transition Semantics Evaluation

= A sequence of steps with trees of
justification for each step

(Cyymy) --> (Cm,) --> (C3,m3) --> .. -->m

= Let -->* be the transitive closure of -->

= Ie, the smallest transitive relation
containing -->

11/15/22

55

‘ Programming Languages & Compilers

[l : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

11/17/22 61

i Lambda Calculus - Motivation

= Aim is to capture the essence of
functions, function applications, and
evaluation

= A—calculus is a theory of computation

= "The Lambda Calculus: Its Syntax and
Semantics”. H. P. Barendregt. North
Holland, 1984

11/17/22

62

i Lambda Calculus - Motivation

= All sequential programs may be viewed
as functions from input (initial state and
input values) to output (resulting state
and output values).

= A-calculus is a mathematical formalism
of functions and functional
computations

= Two flavors: typed and untyped

11/17/22 63

i Untyped A-Calculus

= Only three kinds of
eXpressions.
=Variables: X, y, z, w, ...
= Abstraction: A X. e
(Function creation, think fun x -> €)
= Application: e; e,
" Parenthesized expression: (e)

11/17/22

64

i Untyped A-Calculus Grammar

= Formal BNF Grammar:
= <expression> ::= <variable>
| <abstraction>
| <application>
| (<expression>)
= <abstraction>
::= A<variable>.<expression>
= <application>
;= <expression> <expression>

11/17/22 65

;‘ Untyped A-Calculus Terminology

= Occurrence: a location of a subterm in a
term

= Variable binding: A x. e is a binding of x in e

= Bound occurrence: all occurrences of x in
A X €

= Free occurrence: one that is not bound

= Scope of binding: in A x. €, all occurrences in
e not in a subterm of the form A x. e’ (same
X)

= Free variables: all variables having free
occurrences in a term

11/17/22 66

‘ Example

= Label occurrences and scope:

(AX.YAY. Y (AX.XY) X)X
12 34 56789

11/17/22 67

‘ Example

= Label occurrences and scope:

] fre free
(XX.yny\y(kxf.\xy)x))l(
12 34 56789

11/17/22 68

i Untyped A-Calculus

= How do you compute with the
A-calculus?
= Roughly speaking, by substitution:

s (A x. e1) e, =>%e[e,/x]

= * Modulo all kinds of subtleties to avoid
free variable capture

11/17/22 69

‘ Transition Semantics for A-Calculus

E->FE"’
EE -->F " F
= Application (version 1 - Lazy Evaluation)
(Lx.E) E"--> HE' /X
= Application (version 2 - Eager Evaluation)
E -->F"’
(Ax.E)E ->0\x.EFE’

(A x. £) V--> AV/X]

V - variable or abstraction (value)

11/17/22 70

:-‘ How Powerful is the Untyped A-Calculus?

= The untyped A-calculus is Turing
Complete
= Can express any sequential computation
= Problems:
= How to express basic data: booleans,
integers, etc?
= How to express recursion?

= Constants, if_then_else, etc, are
conveniences; can be added as syntactic
sugar

11/17/22 71

i Typed vs Untyped A-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT
Turing Complete (no recursion)

11/17/22 72

i Uses of A-Calculus

= Typed and untyped A-calculus used for
theoretical study of sequential
programming languages

= Sequential programming languages are
essentially the A-calculus, extended
with predefined constructs, constants,
types, and syntactic sugar

= Ocaml is close to the A-Calculus:

fun x -> exp --> A X. exp

let x = e ine, --> (A X. &))ey

11/17/22 73

i o, Conversion

1. o-conversion:
2 A X.exp —-a--> A Y. (exp [y/x])
3. Provided that
1.y is not free in exp
2. No free occurrence of x in exp
becomes bound in exp when
replaced by y
AX X (LY. xy)-X->Ly.y(LY.YY)

11/17/22 74

i a Conversion Non-Examples

1. Error: y is not free in term second
kx.xy><>ky.yy
2. Error: free occurrence of x becomes
bound in wrong way when replaced by y

AX A Y. XY, > Ay A Y.

X kY. XY, > LY. Y. Yy
exp exp[y/x]

But Ax. (A y.y)x-—-oa-->2%y. (Ay.y)y

And L y. (A y.y) Yy —a-—-> A X. (LY. y)X

11/17/22 75

i Congruence

= Let ~ be a relation on lambda
terms. ~ is a congruence if

= it is an equivalence relation

= If e, ~ e, then
= (eey) ~(eey)and (ee) ~ (e, €)
s AX. € ~VAX €

11/17/22 76

i a Equivalence

= o equivalence is the smallest
congruence containing o
conversion

= One usually treats a-equivalent
terms as equal - i.e. use o
equivalence classes of terms

11/17/22 77

Example

Show: A x. (Ay.y X)X ~a~ A y. (A X. XYy)y
s AX. (LY. yX)X--a->Az (LYy.yZ)Z SO
AX.c(Ay.yX)x~va~v Az (Ay.y2z)z
s (Ly.y2z)—-o—-> (A X.XZ) SO
(Ay.yz) ~a~ (AX.XZ) SO
(Ay.yz)z~o~ (A X. X2Z)ZSO
rz.(hy.yz)z~voav Az (WX X2Z) Z
s LZ (AX.XZ)Z-0—->LY.(AX.XY)Yy SO
AMZ.(AX.XZ)Z~a~ Ly, (A X. XY)Y
B AX. (AY.yX)X~a~v Ay, (AX. XY)Y

11/17/22 78

