Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/13/22


http://courses.engr.illinois.edu/cs421

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results

= May require an auxiliary function

9/13/22 2



i Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous

function, lambda lifted).

- |f Mthen.else (X + g X)

- |fthen (fun x -> f x) else((g (x + X))
*

Not available

9/13/22



i Terminology

= Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e

« if (X>3) then|x + 2|else|x -4 |
= letx=5in[x+ 4]
= Tail Call: A function call that occurs in tall
position
« if (h x) then[f x]else|(x + g X)]

9/13/22



i An Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know
to where to return when the
L call is finished

g = What if fcalls gand g calls 5,

F but calling /s the last thing g
does (a tail call)?

9/13/22 5



i An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know
to where to return when the
& L call is finished

f = What if 7calls gand g calls 5,
but calling Ais the last thing g
does (a tail call)?

= Then /1 can return directly to 7
instead of g

9/13/22 6



i Tail Recursion - length

= How can we write length with tail recursion?
let length list =
let rec length_aux list acc_length =
match list
with [ ] -> acc_length
| (X::xS) ->
length_aux xs (1 + acc_length)
in length_aux list 0

9/13/22 7



i Your turn: list max — tail recursive

#let list_max list =
let rec max_aux list max_so_far =
match list with [] ->max_so_far
| (X i1 XS) ->
max_aux Xs
(if x > max_so_far then x else max_so_far)
N
max_aux list (-17)

9/13/22



i Your turn: list max — tail recursive

#let list_ max list =
let rec max_aux list curr_max =
match list with [] -> curr_max
| (X i1 XS) ->
max_aux Xs
(if x > curr_max then x else curr_max)
in (match list
with [] -> (* ??? *) -1
| X i1 XS -> max_aux Xs X)

9/13/22



i Iterating over lists

# let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->'a)->'a->'blist->"'a =
<fun>
# fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit = ()

9/13/22

10



i Your turn: length, fold_left

let length list =

9/13/22

11



i Your turn: length, fold_left

let length list =
fold_left (fun acc -> fun x -> 1 + acc) list 0

9/13/22

12



i Your turn: list max — tail recursive

#let list_ max list =
let rec max_aux list curr_max =
match list with [] -> curr_max
| (X i1 XS) ->
max_aux Xs
(if x > curr_max then x else curr_max)
in (match list
with [] -> (* ??? *) -1
| X i1 XS -> max_aux Xs X)

9/13/22

13



i list_ max, fold_left

let list_max list =
match list with [] -> (* ??? *) -1
| (X :: XS) ->
fold_left
(fun curr_max -> fun x ->
if x > curr_max then x else curr_max)

X

XS

9/13/22 14



i Folding

# let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->'a)->'a->'blist->"'a =
<fun>

fold_left f a [Xy; X5;...;%,] = f(...(f (f @ X{) X5)...)X,,

# let rec fold_right f list b = match list
with[ ]-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('fa->'b->'b) ->"alist->'b->'b =
<fun>

fold_right f [Xy; X5;...;%,] b = F x4(f X5 (...(F X, D)...))

9/13/22 15




i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

» Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any tail
primitive recursive definition

9/13/22 16



i Continuations

= A programming technique for all forms
of “non-local” control flow:
= hon-local jumps
= exceptions

= general conversion of non-tail calls to tail
calls

= Essentially it’ s a higher-order function
version of GOTO

9/13/22 17



i Continuations

= Idea: Use functions to represent the control
flow of a program

= Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

= Function receiving the result called a
continuation

= Continuation acts as “accumulator” for work
still to be done

9/13/22 18



i Continuation Passing Style

= Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

9/13/22 19



i Continuation Passing Style

= A compilation technique to implement non-
local control flow, especially useful in
Interpreters.

s A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

9/13/22 20



i Why CPS?

= Makes order of evaluation explicitly clear

= Allocates variables (to become registers) for each
step of computation

= Essentially converts functional programs into
imperative ones

= Major step for compiling to assembly or byte
code

= Tail recursion easily identified

» Strict forward recursion converted to tail recursion
= At the expense of building large closures in heap

9/13/22 21



i Other Uses for Continuations

= CPS designed to preserve order of
evaluation

= Continuations used to express order of
evaluation

= Can be used to change order of evaluation

= Implements:
= EXceptions and exception handling
= Co-routines
= (pseudo, aka green) threads

9/13/22

22



Example

= Simple reporting continuation: ‘
# let report x = (print_int x; print_newline( ) );;
val report : int -> unit = <fun>

‘. Simple function using a continuation:‘

# letaddk (a, b) k =k (a + b);;

val addk : int * int -> (int-> "a) -> "a = <fun>
# addk (22, 20) report;;

2

- 1 unit = ()

9/13/22

23



i Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

# let subk (X, y) k = k(x -vy);;

val subk : int * int -> (int -> 'a) -> 'a = <fun>
# let egk (x, y) k= k(x =y);;

val egk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>

# let timesk (X, y) k = k(x *y);;

val timesk : int * int -> (int -> 'a) -> 'a = <fun>

9/13/22 24



i Nesting Continuations

# let add_triple (X, y,z) = (X +vy) + z;;

val add_triple : int * int * int -> int = <fun>

# let add_triple (x,y,2)=letp=x+vyinp + z;;
val add_triple : int * int * int -> int = <fun>

# let add_triple_k (X, y, z) k =

addk (x, y)|(fun p -> addk (p, ) [k]);;

val add_triple_k: int * int * int -> (int -> 'a) ->
'a = <fun>

9/13/22 25



i add three: a different order

s # let add_triple (X, ¥, 2) = x + (Y + 2):;

= How do we write add_triple_k to use a
different order?

s let add_triple_k (X, y, z) k =

9/13/22

26



i add three: a different order

s # let add_triple (X, ¥, 2) = x + (Y + 2):;

= How do we write add_triple_k to use a
different order?

s let add_triple_k (X, y, z) k =
addk (y,z) (fun r -> addk(x,r) k)

9/13/22

27



i Recursive Functions

'm Recall: |
# let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
# factorial 5;;
-1 int =120

9/13/22

28



i Terms

= A function is in Direct Style when it returns its
result back to the caller.

= A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

= Instead of returning the result to the caller, we
pass it forward to another function giving the
computation after the call.

9/13/22 29



i Recursive Functions

# let rec factorial n =
letb = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
elselets = n—-1in (* Second computation *)
let r = factorial s in (* Third computation *)
n * r (* Returned value *) ;;
val factorial : int -> int = <fun>
# factorial 5;;
-:int =120

9/13/22 30



i Recursive Functions

# let rec factorialk n k =
egk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)
val factorialk : int -> (int -> 'a) -> 'a = <fun>
# factorialk 5 report;;
120
- 1 unit = ()

9/13/22 31



i Recursive Functions

= TO make recursive call, must build
intermediate continuation to

= take recursive value: r
= build it to final result: n * r

= And pass it to final continuation:

. times (n, r) k = k (n * r)

9/13/22

32



i Example: CPS for length

let rec length list = match list with [] -> 0
| (@ :: bs) -> 1 + length bs
What is the let-expanded version of this?

9/13/22

33



i Example: CPS for length

let rec length list = match list with [] -> 0

| (@ :: bs) -> 1 + length bs
What is the let-expanded version of this?
let rec length list = match list with [] -> 0

| (@::bs)->letrl =lengthbsin1 +rl

9/13/22 34



i Example: CPS for length

#let rec length list = match list with [] -> 0
| (@::bs)->letrl =lengthbsin1 +rl
What is the CSP version of this?

9/13/22

35



i Example: CPS for length

#let rec length list = match list with [] -> 0
| (@::bs)->letrl =lengthbsin1 +rl
What is the CSP version of this?
#let rec lengthk list k = match list with [ ] -> k 0
| X 11 Xs -> lengthk xs (fun r -> addk (r,1) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
# lengthk [2;4:6;8] report;;
4
- 1 unit = ()

9/13/22 36



i CPS for sum

# let rec sum list = match list with[ ] -> 0
| X 11 XS -> X 4+ sum XS ;;
val sum : int list -> int = <fun>

9/13/22

37



i CPS for sum

# let rec sum list = match list with[ ] -> 0
| X 11 XS -> X 4+ sum XS ;;

val sum : int list -> int = <fun>

# let rec sum list = match list with[ ] -> 0
| X i xs->letrl =sumxs inx +rl;;

9/13/22

38



i CPS for sum

# let rec sum list = match list with[ ] -> 0
| X 11 XS -> X 4+ sum XS ;;
val sum : int list -> int = <fun>
# let rec sum list = match list with[ ] -> 0
| X i xs->letrl =sumxs inx +rl;;
val sum : int list -> int = <fun>
# let rec sumk list k = match list with [ ] -> k 0
| X 11 Xs ->sumk xs (fun rl -> addk x r1 k);;

9/13/22

39



i CPS for sum

# let rec sum list = match list with[ ] -> 0
| X 11 XS -> X 4+ sum XS ;;
val sum : int list -> int = <fun>
# let rec sum list = match list with[ ] -> 0
| X i xs->letrl =sumxs inx +rl;;
val sum : int list -> int = <fun>
# let rec sumk list k = match list with [ ] -> k 0
| X 11 xs ->sumk xs (fun rl -> addk (x, r1) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
# sumk [2;4;6;8] report;;
20
- 1 unit = ()

9/13/22

40



i CPS for Higher Order Functions

= In CPS, every procedure / function takes a
continuation to receive its result

= Procedures passed as arguments take
continuations

s Procedures returned as results take
continuations

= CPS version of higher-order functions must
expect input procedures to take
continuations

9/13/22 41



i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs)->letb =pxin
if b then all (p, xs) else false
val all : ("a -> bool) -> "a list -> bool = <fun>
= What is the CPS version of this?

9/13/22

42



i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs) ->letb = p xin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k =

9/13/22 43



i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs) ->letb = p xin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] ->  true

9/13/22 44



i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs) ->letb = p xin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?

#let rec allk (pk, I) k = match | with [] -> k true

9/13/22 45



i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs)->letb = p xin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, I) k = match | with [] -> k true
| (X 11 XS) ->

9/13/22 46



i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs)->letb = p xin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, I) k = match | with [] -> k true
| (X i1 XS) -> pk X

9/13/22 47



i Example: all

#let rec all (p, I) = match | with [] -> true

| (X ::xs)->letb = p xin

if b then all (p, xs) else false

val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, I) k = match | with [] -> k true
| (X i1 XS) -> pk X

) (fun b -> if b then else

9/13/22 48



i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs)->letb =pxin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, ) k = match | with [] -> k true
| (X i XS) -> pk x
(fun b -> if b then allk (pk, xs) k else k

false)

val allk : ("fa -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun>

9/13/22 49



i Terminology: Review

= A function is in Direct Style when it returns its
result back to the caller.

= A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

= A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

= Instead of returning the result to the caller, we
pass it forward to another function giving the
computation after the call.

9/13/22 50



i CPS Transformation

= Step 1: Add continuation argument to any function
definition:
«letfarg=e = letfargk =e

= Idea: Every function takes an extra parameter
saying where the result goes

= Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:

=« Feturna = k a
= Assuming a is a constant or variable.
= “Simple” = “No available function calls.”

9/13/22 51



i CPS Transformation

= Step 3: Pass the current continuation to every
function call in tail position

=« return farg = farg k

= The function “isn’ t going to return,” so we need
to tell it where to put the result.

9/13/22 52



i CPS Transformation

= Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)

= return op (f arg) = f arg (fun r -> k(op r))
= Op represents a primitive operation

« return g(f arg) = farg (fun r-> g r k)

9/13/22 53



i Example

Before: After:
: . let rec add_listk Ist k =
let rec add_.llst Ist = (* rule 1 %)
[1>0 | [1-> kO (* rule 2 *)

o (* rule 3 *)
| X .;:IC)ZI(SI' >t (+)__X | X i1 xs -> add_listk xs
(add_list xs);; (fun r -> Kk ((+) x 1);;

(* rule 4 *)

9/13/22 54



i Other Uses for Continuations

= CPS designed to preserve order of
evaluation

= Continuations used to express order of
evaluation

= Can be used to change order of evaluation

= Implements:
= EXceptions and exception handling
= Co-routines
= (pseudo, aka green) threads

9/13/22

55



i Exceptions - Example

# /ero;;
exception Zero
# let rec list._ mult_aux list =

match list with[ ] -> 1

| X 11 XS ->

if x = 0 then Zero

else x * list._mult_aux xs;;

val list._ mult_aux : int list -> int = <fun>

9/13/22 56



i Exceptions - Example

# let list_ mult list =

list. mult_aux list Zero
val list._ mult : int list -> int = <fun>
# list_ mult [3;4;2];;

-:int = 24
# list mult [7;4;0];;
-:int=0

# list_ mult_aux [7;4;0];;
Exception: Zero.

9/13/22

0;;

57



i Exceptions

= When an exception is raised
= The current computation is aborted

= Control is “thrown” back up the call
stack until a matching handler is
found

= All the intermediate calls waiting for a
return values are thrown away

9/13/22 58



i Implementing Exceptions

# let multkp (m, n) k =
letr=m*nin
(print_string "product result: ";
print_int r; print_string "\n";
Kr);;
val multkp : int (int -> (int -> 'a) -> 'a =
<fun>

9/13/22 59



i Implementing Exceptions

# let rec list_multk_aux list k kexcp =
match list with [ ] -> k 1
| X 12 xs->if x =0 then kexcp 0
else list_multk_aux xs
(fun r -> multkp (x, r) k) kexcp;;

val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)
-> 'a = <fun>

# let rec list._multk list k = list._multk_aux list k k:;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/13/22 60



i Implementing Exceptions

# list_multk [3;4;2] report;;
product result: 2

product result: 8

product result: 24

24

- 1 unit = ()

# list_multk [7;4;0] report;;
0

- 1 unit = ()

9/13/22

61



