Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/12/22 1

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

i Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-1 int =120
(* rec is needed for recursive function
declarations *)

9/12/22

i Recursion Example

Compute n? recursively using:
n=(2*n-1)+ (n-1)2

let rec nthsg n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)

n->(2*n-1) (* recursive case *)

+ nthsqg (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>

nthsq 3;;

- 1int=9

Structure of recursion similar to inductive proof

9/12/22 3

i Recursion and Induction

let rec nthsg n = match nwith 0 -> 0
In->(2*n-1)+nthsg(n-1) ;;

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are
somehow smaller - must progress to base case

= If or match must contain base case
= Failure of these may cause failure of termination

9/12/22 4

i Evaluating expressions in OCaml

= Evaluation uses an environment p
« Eval (e, p)

= A constant evaluates to itself, including
primitive operators like + and =
= Eval (c, p) => Val c

= T0 evaluate a variable v, look it up in p:
= Eval (v, p) => Val (p(v))

9/12/22

i Evaluating expressions in OCaml

= T0 evaluate a tuple (ey,...,e,),

« Evaluate each e; to v;, right to left for Ocaml

= Then make value (vq,...,v,)

« Eval((ey,...,e,),p)=> Eval((ey,...,Eval (e, p)), p)

s Eva
Eva

= Eva

9/12/22

((el,...,ei, Val Vi+ll"'l Val Vn) P p) =>
((ey,...,Eval(e;, p), Val viy4,..., Val v,) , p)

((Val vq,...,Val v,) , p) => Val (v4,...,v,)

i Evaluating expressions in OCaml

= 10 evaluate uses of +, -, etc, eval args, then
do operation @ (+, - * +)
« Eval(e;®@e,, p) => Eval(el@EvaI(ez, p), p))
« Eval(e;®Val e,, p)=>Eval(Eval(e;, p)®Val v,, p))
« Eval(Val vi@® Val v,) => Val (vi® Vv,)

= Function expression evaluates to its closure
« Eval (funx->¢, p) =>Val < x-> ¢, p>

9/12/22 7

i Evaluating expressions in OCaml

m 10 evaluate a local dec: let x = el in e2
=« Eval el to v, then eval e2 using {x — v} + p

=« Eval(let x = e; ine,, p) =>
Eval(let x = Eval(ey, p) in e,, p)

« Eval(letx = Valvine,, p) =>
Eval(e,, {x —» v} + p)

9/12/22

i Evaluating expressions in OCaml

= [0 evaluate a conditional expression:

if b then e, else e,
=« Evaluate b to a value v

s Ifv
s Ifv

s Eva
Eva

= Eva
= Eva

9/12/22

is True, evaluate e,
is False, evaluate e,

(if b then e, else e,, p) =>
(if Eval(b, p) then e; else e,, p)

(if Val true then e, else e,, p) =>Eval(ey, p)
(if Val false then e, else e,, p) =>Eval(e,, p)

i Evaluation of Application with Closures

= Given application expression f e
s In Ocaml, evaluate e to value v

= In environment p, evaluate left term to closure,
Cc = <(Xy,..,X,) > b, p’>

» (Xq,...,X,) variables in (first) argument
= V must have form (vy,...,v,)

= Update the environment p’ to
P ={Xy = Vyi,ee, Xgo SV ++ p’

= Evaluate body b in environment p”

9/12/22 10

i Evaluation of Application with Closures

= Eval(f e, p) => Eval(f (Eval(e, p)), p)

» Eval(f (Val v), p) =>Eval((Eval(f, p)) (Val v), p)

« Eval((Val <(xy,...,X,) = b, p">)(Val (vy,...,Vn)), p)=>

Eval(b, {X; = Vq,..., X, = V }+p")

9/12/22 11

i Evaluation of Application of plus_x::

= Have environment:
p =A{plus_ X - <y -y + X, Pplus_ X 7 =+ 1
v —> 19, x >17,z -3, ...}
where Pplus_x = X—>12,..,y—> 24, ...}
= Eval (plus_xz, p) =>
= Eval(plus_x (Eval(z, p))) => ...

9/12/22 12

i Evaluation of Application of plus_x::

= Have environment:
p =A{plus_ X - <y -y + X, Pplus_ X 7 =+ 1
v > 19, x >17,z -3, ...}
where Pplus_x = IX—> 12, 2,y — 24, ...}
= Eval (plus_x z, p) =
= Eval(plus_x (Eval(z,0)), p) =>
= Eval(plus_x (Val 3), p) => ...

9/12/22 13

i Evaluation of Application of plus_x::

= Have environment:
p =A{plus_ X - <y -y + X, Pplus_ X 7 =+ 1
v —> 19, x >17,z -3, ...}

where Pplus_x = X—>12,..,y—> 24, ...}
= Eval (plus_xz, p) =>
= Eval (plus_x (Eval(z, p)), p) =>
= Eval (plus_x (Val 3), p) =>
= Eval ((Eval(plus_x, p)) (Val 3), p) => ...

9/12/22 14

i Evaluation of Application of plus_x::

= Have environment:
p =A{plus_ X - <y -y + X, Pplus_ X 7 =+ 1
v » 19, x/~>17,z -3, ...}

where Pplus_ X = X¥—> 12, ...,y > 24, ...}
= Eval (plus_x 2, p) >
= Eval (plus_x (kval(z, p)), p) =>
= Eval (plus_x (Mal' 3), p) =>
= Eval ((Eval(plus/x, p)) (Val 3), p) =>

= Eval ((Val<y -y + X, ppjus x >)(Val 3), p)
=> .. N

9/12/22 15

i Evaluation of Application of plus_x::

= Have environment:
p=A{plus_ X > <y >y +X pplys x >s -
v —> 19, x >17,z -3, ...}
where Pplus_x = X—>12,..,y—> 24, ...}

= Eval ((Val<y -y + X, ppjys x >)(Val 3), p)
=> ... -

9/12/22 16

i Evaluation of Application of plus_x::

= Have environment:
p ={plus_ X > <y >y + X, ppjys x >/ -
v —> 19, x —>17,z2 >3, ...}
where ppys x =X =12, ...,y = 24, ...}

= Eval ((Val<y — %m «>)(Val 3), p)
=>]

= Eval (y +X, {y = 3} +ppjus x) => --

|

9/12/22 17

i Evaluation of Application of plus_x::

= Have environment:
p=A{plus_ X > <y >y +X pplys x >s -
v —> 19, x >17,z -3, ...}
where Pplus_x = {X—>12, ...,y —> 24, ...}
= Eval ((Val<y — y + X, ppiys_x >)(Val 3), p)
=>
m Eval (y + x, {y —> 3} +pp|us_x) =>
= Eval(y+Eval(x, {y — 3} +ppius x)s

{y > 3} +pplus x) => --

9/12/22 18

i Evaluation of Application of plus_x::

= Have environment:
p ={plus_x > <y >y + X, ppjus x >s -
v > 19, x >17,z -3, ...}
where Pplus_x = X—>12,..,y—> 24, ...}
= Eval ((Val<y — y/+ x,/ppius x >)(Val 3), p)
=>
s Eval (y + x, {y— 3} +pp|us_x) =>
= Eval(y+Eval(x, §/ — 3} +ppius x)s

{y — 3} pplus_x) =2
= Eval(y+Val 12,{y — 3} +pp|us_x) => ..

9/12/22 19

i Evaluation of Application of plus_x::

= Have environment:
p = {plus_ X - <y >y +X, Pplus_x =7 = 1
v > 19, x >17,z -3, ...}
where Pplus_x = X—>12,..,y—> 24, ...}
= Eval(y+Eval(x, {y > 3} +ppjus x)r
1y = 3} +pplus_x) =>
= Eval(y+Val 12{y — 3} +ppjys x) =>

= Eval(Eval(y, {y — 3} +ppjus_x) +
Val 12,{y — 3} +ppjys x) =>-..

9/12/22 20

i Evaluation of Application of plus_x::

= Have environment:
p =A{plus_ X - <y -y + X, Pplus_ X 7 =+ 1
v > 19, x >17,z -3, ...}
where Pplus_x_= X—>12,..,y—> 24, ...}
s Eval(Eval(y, {y —» 3} +pp|us_x) -+
Val 12 —> 3} +pp|US_X) =>
= Eval(Val 3 + Val 12 ,{y — 3} +pp|us_x) =>...

9/12/22 21

i Evaluation of Application of plus_x::

= Have environment:
p =A{plus_ X - <y -y + X, Pplus_ X 7 =+ 1
v > 19, x >17,z -3, ...}
where Pplus_x = X—>12,..,y—> 24, ...}
= Eval(Eval(y, {y —» 3} +pp|us_x) -+
Val 12,{y —> 3} +pp|US_X) =>
= Eval(Val 3 + Val 12 {y — 3} +ppjys x) =>
= Val (3 + 12) = Val 15

9/12/22 22

i Evaluation of Application of plus_pair

= Assume environment

p={X—> 3.,
plus_pair _)<(n/m) —N + m, Pplus_pair>} + Pplus_pair
= Eval (plus_pair (4,x), p)=>

= Eval (plus_pair (Eval ((4, x), p)), p) =>

plus_pair (Eval ((4, Eval (x, p)), p)), p) =>
plus_pair (Eval ((4, Val 3), p)), p) =>
plus_pair (Eval ((Eval (4, p), Val 3), p)), p) =>
= Eval (plus_pair (Eval ((Val 4, Val 3), p)), p) =>

9/12/22 23

s Eva

s Eva

s Eva

(
(
(
(

i Evaluation of Application of plus_pair

x Assume environment

p={X—-> 3.,
plus_pair —_><(n,m) —N+m, pplus_pair>} + Pplus_pair
= Eval (plus_pair (Eval ((Val 4, Val 3), p)), p) =>

= Eval (plus_pair (Val (4, 3)), p) =>

= Eval (Eval (plus_pair, p), Val (4, 3)), p) => ...

= Eval ((Val<(n,m)—n+m, ppus pair>)(Val(4,3)) , p)=>
= Eval (n+ m, {n->4, m->3} + ppus pair) =>

= Eval (4 + 3,{n->4, m->3}+ ppus pair) => 7

9/12/22 24

i Lists

= List can take one of two forms:

« Empty list, written []
= Non-empty list, written X :: Xxs

= X IS head element, xs is tail list, :: called
“Cons”

= Syntactic sugar: [x] == x :: []
s [X1 X2 .oxn]==x1:x2: . nxn []

9/12/22

25

i Lists

let fib5 = [8;5:3;2;1:11;;

val fib5 :intlist =1[8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- i]nt ist=1[8;5;3;2;1;1; 13;8;5; 3; 2; 1;
1

9/12/22 26

i Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here
used with type int

9/12/22

27

i Question

ol

Which one of these lists is invalid?

2; 3, 4, 6]

2,3, 4,5, 6,7]

(2.3,4); (3.2,5); (6,7.2)]

[*hi”; “there™]; ["wahcha™]; [1; ["doin™]]

9/12/22 28

i Answer

ol

Which one of these lists is invalid?

2; 3, 4, 6]

2,3, 4,5, 6,7]

(2.3,4); (3.2,5); (6,7.2)]

[*hi”; “there™]; ["wahcha™]; [1; ["doin™]]

3 is invalid because of last pair

9/12/22 29

i Functions Over Lists

let rec double_up list =

match list
with []->[] (* pattern before ->,

expression after *)
| (X 11 xs)-> (X :: X ::double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5 2 :intlist=[8; 8; 5;5; 3; 3; 2; 2; 1;
1;1; 1]

9/12/22 30

Functions Over Lists

+

#

et silly = double_up ["hi"; "there"];;

val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with [] -> []

val

(X::XS) -> poor_rev xs @ [X];;
Door_rev : 'a list -> 'a list = <fun>

poor_rev silly;;

9/12/22

String Iist — [Iltherell; lltherell; llhi"; llhill]

31

i Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/12/22 32

i Question: Length of list

= Problem: write code for the length of the list
=« How to start?

let rec length list =

9/12/22 33

i Question: Length of list

= Problem: write code for the length of the list
=« How to start?

let rec length list =
match list with

9/12/22 34

i Question: Length of list

= Problem: write code for the length of the list
=« What patterns should we match against?

let rec length list =
match list with

9/12/22 35

i Question: Length of list

= Problem: write code for the length of the list
=« What patterns should we match against?

let rec length list =
match list with [] ->
| (@ :: bs) ->

9/12/22 36

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is empty?

let rec length list =
match list with []-> 0
| (@ :: bs) ->

9/12/22 37

i Question: Length of list

= Problem: write code for the length of the list
=« What result do we give when list is not empty?

let rec length list =
match list with []-> 0
| (@ :: bs) ->

9/12/22 38

i Question: Length of list

= Problem: write code for the length of the list
=« What result do we give when list is not empty?

let rec length list =
match list with []-> 0
| (@ :: bs) -> 1 + length bs

9/12/22 39

i Structural Recursion : List Example

let rec length list = match list
with []-> 0 (* Nil case *)
| @ :: bs->1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4,; 3; 2];;
-:int =4

= Nil case [] is base case
= Cons case recurses on component list bs

9/12/22 40

i Same Length

= How can we efficiently answer if two lists
have the same length?

9/12/22

41

i Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length listl list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (X::xS) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/12/22

42

i Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =

9/12/22 43

i Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doublelList list =
match list
with [] ->[]
| X ::xs-> (2 *Xx) :: doubleList xs

9/12/22 44

i Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doublelList list =
match list
with [1->[}—— —
[[X[[xs|-> (2 * x) :| doubleList xg

M

9/12/22 45

i Higher-Order Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh) :: (map f t);;
val map : ('a-> 'b) -> "a list -> 'b list = <fun>
map plus_two fib5;;
- intlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
cintlist =[12; 7; 4; 2; 1; 0; O]

9/12/22 46

i Higher-Order Functions Over Lists

let rec map f list =
match list

r

- L~
) ->[(Fh)|:: (mapft)\,

val map—: (‘a—> 'b) -> 'a list -
map plus_two fib5;;

- intlist = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;

cintlist =[12; 7; 4; 2; 1; 0; O]

9/12/22

> 'b list = <fun>

47

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- 1 int list = [4; 6; 8]

9/12/22 48

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- 1 int list = [4; 6; 8]

= Same function, but no explicit recursion

9/12/22

49

i Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> X * multList xs;;
val multList : int list -> int = <fun>
multList [2:4,6];;
- 1 int = 48

= Computes (2 * (4 * (6 * 1)))

9/12/22 50

i Folding Recursion : Length Example

let rec length list = match list
with []-> 0 (* Nil case *)
| @ :: bs->1 + length bs;; (* Cons case *)
val length : "a list -> int = <fun>
length [5; 4; 3; 2];;
-:int=4

= Nil case [] is base case, 0 is the base value
= Cons case recurses on component list bs

= What do multList and length have in common?

9/12/22 51

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

s Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

9/12/22 52

i Forward Recursion: Examples

let rec double_up list =
match list
with[]->1]]
| (X ::XS) -> (X :: X :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []
| (X::xs) -> letr = poor_revxsinr @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

9/12/22

53

i Forward Recursion: Examples

let rec double_up list =

match list

with [] ->

| (x i x8) ->[(x :: X ::|double_up xs);;

val double“up : 'a list ->{'a list = <

| Base Case | | Operator || Recursive Call|
let rec poor_rev list =

match list

with [] ->

(x::x?/->\ let r = poor_rev xs in r{@ [x];; |
val poor_rev : a list -> 'a list =
Base Case | | Operator || Recursive Call|

9/12/22 54

i Recursing over lists

let rec fold_right f list b =
match list @ N\
with []-> b The Primitive
| (X :: xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right : ('a->'b->'b)->"alist->'b->'b =

<fun>

fold_right

(fun s -> fun () -> print_string s)
["hi": "there"]
o

therehi- : unit = (Ow

9/12/22 55

i Folding Recursion : Length Example

let rec length list = match list
with []-> 0 (* Nil case *)
| @ :: bs->1 + length bs;; (* Cons case *)
val length : "a list -> int = <fun>
let length list =
fold_right (funa->funr->1 +r) list 0;;
val length : "a list -> int = <fun>
length [5; 4; 3; 2];;
-:int=4

9/12/22 56

i Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> X * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- 1 int = 48

9/12/22 57

i Forward Recursion: Examples

let rec double_up list =

match list
with [] -
| (x i xg) ->[(x :: x ::|double_up xs);;
val double“up : 'a list ->{'a list = <
| Base Case | | Operator || Recursive Call|

let double_up =

fold_right (fun x -> fun r -> Iist
[Operator] [Recursive resulf] [Base Case|

double_up [Ilall;llbll];;
_ : String IiSt — ["all; llall; llbll; llbll]

9/12/22 58

i Encoding Forward Recursion with Fold

let rec append listl list2 =

val append : 'a list -> "a list -> 'a list = <fun>

9/12/22 59

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with

val append : 'a list -> "a list -> 'a list = <fun>

9/12/22 60

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]-> list2
val append : 'a list -> "a list -> 'a list = <fun>

9/12/22 61

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with

[]->]list2
val append : 'a list -> "a list -> 'a list = <fun>

| Base Case |

9/12/22 62

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]->|list2 || x::xs ->
val append : 'a list -> "a list -> 'a list = <fun>

| Base Case |

9/12/22 63

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[1->|list2 || x::xs -> x :: append xs list2;;
val append : 'a list -> "a list -> 'a list = <fun>

| Base Case |

9/12/22 64

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]->|list2 || x::xs ->|x ::|append xs listd;;
val append : ‘a list -> "a/list -> "a\lis\t= <fun>

| Base Case | |Operation || Recursive Call|

9/12/22 65

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]1->|list2 || x::xs ->|x ::|pppend xs listq;;
val append : 'a list -> "a/list -> "a\lis\t= <fun>

| Base Case

| Operation || Recursive Call |

let append listl list2 =
fold_right (fun x -> funy -> list1 list2};
val append : 'a list -> "a list -> 'a list = <fun>

9/12/22 66

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]1->|list2 || x::xs ->|x ::|pppend xs listq;;
val append : 'a list -> "a/list -> "a\lis\t= <fun>

| Operation || Recursive Call |

| Base Case

let append listl list2 =
fold_right (fun x -> fun y -> list1] list2;

val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4,5;6];;

-intlist = [1; 2; 3; 4; 5; 6]

9/12/22 67

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results

= May require an auxiliary function

9/12/22 68

i Tail Recursion - length

= How can we write length with tail recursion?
let length list =
let rec length_aux list acc_length =
match list
with [] -> acc_length
| (X::xS) ->
length_aux xs (1 + acc_length)
in length_aux list 0

9/12/22 69

i Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X i1 XS -> rev_aux Xxs (X::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [|;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/12/22

70

i Comparison

= poor_rev [1;2;3] =

= (poor_rev [2;3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @ [3]) @[2]) @[1] =
« ([JO@[3]) @[2]) @ [1]) =

= ([3]1@[2]) @ [1] =

= B ([]@[2]) @[1] =

x [3;2] @ [1] =

= 3 ([2] @[1]) =

e 320 ([1@[1]) =1[3; 2; 1]

9/12/22

/1

i Comparison

mrev[1;2;3] =

= rev_aux [1:2:3]1[] =

= rev_aux [2:3][1] =

= rev_aux [3][2:1] =

= rev_aux [][3;2;1] = [3;2;1]

9/12/22 &

i Iterating over lists

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->"'a =
<fun>
fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit = ()

9/12/22

73

i Folding - Tail Recursion

- # let rev list =
fold left
(funl->funx->x::1) //comb op
[] //accumulator cell

list

9/12/22 74

i Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->'a)->'a->'blist->"'a =
<fun>

fold_left f a [Xy; X5;...;%,] = f(...(f (f @ X{) X5)...)X,,

let rec fold_right f list b = match list
with[]-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b)->"alist->'b->'b =
<fun>

fold_right f [Xy; X5;...;%,] b = f x4(f X5 (...(F X, D)...))

9/12/22 75

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

» Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any tail
primitive recursive definition

9/12/22 76

i How long will it take?

= Remember the big-O notation from CS 225
and CS 374

= Question: given input of size 1, how long to
generate output?

= Express output time in terms of input size,
omit constants and take biggest power

9/12/22 77

i How long will it take?

Common big-0O times:
= Constant time O (1)
= input size doesn’t matter
= Linear time O (n)
= double input = double time
= Quadratic time O ()
= double input = quadruple time
= Exponential time O (27)
= increment input = double time

9/12/22

78

i Linear Time

= Expect most list operations to take
linear time O (n)

= Each step of the recursion can be done
In constant time

= Each step makes only one recursive call
= List example: multList, append
= Integer example: factorial

9/12/22 79

i Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (X::xs) -> poor_rev xs|@|[x];;
val poor_rev : 'a list -> 'a list = <fun>

9/12/22 80

i Exponential running time

= Poor worst-case running times on input of

any size
= Each step of recursion takes constant time
= Each recursion makes two recursive calls

= Easy to write nailve code that is exponential

for functions that can be linear

9/12/22 81

i Exponential running time

let rec slow n =
ifn <=1
then 1
else 1+slow (n-1) + slow(n-2);;
val slow : int -> int = <fun>
List.map slow [1:2:3;4:5;6;7;8;9];;
- intlist = [1; 3; 5; 9; 15; 25; 41; 67;
109]

9/12/22 82

i An Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know
to where to return when the
L call is finished

g = What if fcalls gand g calls 5,

F but calling /s the last thing g
does (a tail call)?

9/12/22 83

i An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know
to where to return when the
& L call is finished

f = What if 7calls gand g calls 5,
but calling Ais the last thing g
does (a tail call)?

= Then /1 can return directly to 7
instead of g

9/12/22 84

