Programming Languages and
Compilers (CS 421)

'Elsa L Gunter ﬂ
2112 SC, UIUC /

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/12/22 1

‘ Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120
(* rec is needed for recursive function
declarations *)

9/12/22 2

‘ Recursion Example

Compute n2 recursively using:
n=0R2*n-1)+ (n-1)?

let rec nthsg n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
|n->(2*n-1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)

val nthsq : int -> int = <fun>

nthsq 3;;

- 1int=9

‘ Recursion and Induction

let rec nthsq n = match n with 0 -> 0
[n->(2*n-1)+nthsq (n-1);;

Structure of recursion similar to inductive proof

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are
somehow smaller - must progress to base case

= if or match must contain base case
= Failure of these may cause failure of termination

9/12/22 3

9/12/22 4

‘ Evaluating expressions in OCaml

= Evaluation uses an environment p
= Eval (e, p)

= A constant evaluates to itself, including
primitive operators like + and =
= Eval (c, p) => Valc

= To evaluate a variable v, look it up in p:
= Eval (v, p) => Val (p(v))

9/12/22 5

‘ Evaluating expressions in OCaml

= To evaluate a tuple (ey,...,€,),
= Evaluate each g, to v;, right to left for Ocaml
= Then make value (vy,...,v,)

" Eval((ell"'len)lp)=> Eval((ell"-lEvaI (enl p))l p)

= Eval((ey,...,&;, Val viy4,..., Val v,) , p) =>
Eval((ey,...,Eval(g;, p), Val viyy,..., Val v,) , p)

= Eval((Val vy,...,Val v,,) , p) => Val (v4,...,Vp)

9/12/22 6

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args, then
do operation ® (+, -, *, +.,)
= Eval(e;®@e,, p) => Eval(e;®@Eval(e,, p), p))
= Eval(e;®Val e,, p)=>Eval(Eval(e;, p)®Val v, p))
« Eval(Val vi@® Val v,) => Val (vi® Vv,)

= Function expression evaluates to its closure
= Eval (funx->¢, p) =>Val < x-> e, p>

9/12/22 7

‘ Evaluating expressions in OCaml

= To evaluate a local dec: let x = el in e2
= Eval el to v, then eval e2 using {x —» v} + p

= Eval(let x = e; in e,, p) =>
Eval(let x = Eval(ey, p) in e, p)

= Eval(let x = Val vin ey, p) =>
Eval(e,, {x - v} + p)

9/12/22 8

‘ Evaluating expressions in OCaml|

= To evaluate a conditional expression:
if b then e, else e,
= Evaluate b to a value v
= If vis True, evaluate e;
= If v is False, evaluate e,

=« Eval(if b then e; else e,, p) =>
Eval(if Eval(b, p) then e, else e,, p)

= Eval(if Val true then e, else e,, p) =>Eval(ey, p)
= Eval(if Val false then e, else e,, p) =>Eval(e,, p)

9/12/22 9

Evaluation of Application with Closures

= Given application expression f e
= In Ocaml, evaluate e to value v

= In environment p, evaluate left term to closure,
€ = <(Xq,..,Xy) > b, p">

= (X4,...,X,) variables in (first) argument
= v must have form (vy,...,vy)

= Update the environment p’ to
p” = {Xy > Vieey Xy DVt p’

= Evaluate body b in environment p”

9/12/22 10

‘ Evaluation of Application with Closures

= Eval(f e, p) => Eval(f (Eval(e, p)), p)

« Eval(f (Val v), p) =>Eval((Eval(f, p)) (Val v), p)

= Eval((Val <(X4,...,X,) = b, p>)(Val (vy,...,Vp)), p)=>

Eval(b, {X; = Vi,-.., Xn = Vo3+p")

9/12/22 11

‘ Evaluation of Application of plus_x;;

= Have environment:
p ={plus_x - <y -y +x, Pplus_x 7« 1
y — 19, x -»17,z >3, ...}
where Pplus x = xX—->12,..,y—> 24, ..}
= Eval (plus_x z, p) =>
= Eval(plus_x (Eval(z, p))) => ...

9/12/22 12

‘ Evaluation of Application of plus_x;;

= Have environment:

p = {plus_x > <y =y + X, pplus x >/ -+
y—>19,x—->17,z2 -3, ...}

= Eval (plus_x z, p) =
= Eval(plus_x (Eval(z,19)), p) =>
= Eval(plus_x (Val 3), p) => ...

9/12/22 13

‘ Evaluation of Application of plus_x;;

= Have environment:
p = {plus_x > <y =y + X, pplus_x >s -+
y—>19,x->17,z->3, ..}

where Pplus_x = xX—>12,..,y—> 24, ...}
= Eval (plus_x z, p) =>
= Eval (plus_x (Eval(z, p)), p) =>
= Eval (plus_x (Val 3), p) =>
= Eval ((Eval(plus_x, p)) (Val 3), p) => ...

9/12/22 14

‘ Evaluation of Application of plus_x;;

= Have environment:
p = {plus_X = <y =y + X, pplys_x >s - s
y » 19, x
where ppjus x ={¥—> 12, ...,y > 24, .}
= Eval (plus_x
= Eval (plus_x (Eval(z, p)), p) =>
= Eval (plus_x (Mal'3), p) =>
= Eval ((Eval(plus/x, p)) (Val 3), p) =>

= Eval ((Val<y -y + X, Pplus_x >)(Val 3), p)
=> .. -

9/12/22 15

‘ Evaluation of Application of plus_x;;

= Have environment:
p ={plus_x - <y -y + X, Pplus_x 7 -+ 1
y—>19,x->17,z2->3, ..}
where ppys x ={X—>12, ...,y > 24, ..}

= Eval ((Val<y -y + X, ppjys x >)(Val 3), p)
=> ..

9/12/22 16

‘ Evaluation of Application of plus_x;;

= Have environment:

p = {plus_x - <y >y +x, Pplus_x 7+ 1
y — 19, x -»17,z -3, ...}

where pmuwﬁx —12, ...,y —> 24, ..}
= Eval ((Val<y - y + XPpius x >)(Val 3), p)
=>

= Eval (y +'%, {y = 3} +ppjus_x) => -

9/12/22 17

‘ Evaluation of Application of plus_x;;

= Have environment:
p =A{plus_Xx - <y >y + X, Pplus_x 7 = 1
y > 19, x »17,z -3, ...}
where pp'US_X = {X - 12, e Y > 24, }
= Eval ((Val<y -y + X, ppjys x >)(Val 3), p)
=>
= Eval (y + X, {y = 3} +ppjys x) =>
= Eval(y+Eval(x, {y —» 3} +pplus_x)l
{y = 3} +ppius x) => -

9/12/22 18

‘ Evaluation of Application of plus_x;;

= Have environment:
p ={plus_ x - <y >y +x, Pplus_x 7 -+ 1
y—>19,x->17,z2-3, ..}
where ppys x ={X—>12, ...,y > 24, ..}
= Eval ((Val<y — y/+ X/ppjus x >)(Val 3), p)
=>
= Eval (y + %, {y' > 3} +ppius x) =>
= Eval(y+Eval(x, {§ — 3} +ppius x)r
{y - 3} pplus_x) =>
= Eval(y+Val 12,{y — 3} +pp|us_x) => ..

9/12/22 19

‘ Evaluation of Application of plus_x;;

= Have environment:
p =A{plus_x = <y =y + X, ppjus x>/ -+ s
y—19,x -»17,z >3, ..}
where ppjys x ={x > 12, ...,y > 24, .}
= Eval(y+Eval(x, {y — 3} +ppjus_x)r
{y > 3} +ppius x) =>
= Eval(y+Val 12,{y - 3} +ppys x) =>

= Eval(Eval(y, {y — 3} +ppiys x) +
Val 12,{y — 3} +ppjys x) =>--

9/12/22 20

‘ Evaluation of Application of plus_x;;

= Have environment:
p ={plus_ x - <y >y +x, Pplus_x 7+ 1
y — 19, x -»17,z >3, ...}
where Pplus_x_= {xX—>12,..,y—> 24, ...}
= Eval(Eval(y, {y —» 3} +pp|us_x) +
Val 1 = 3} +Pplus x) =>
= Eval(val 3 + Val 12 {y —» 3} +pp|us_x) =>...

9/12/22 21

‘ Evaluation of Application of plus_x;;

= Have environment:
p = A{plus_x > <y >y + X, ppjus x> - s
y —> 19, x—>17,z -3, ..}
where ppjus x =X > 12, ..,y > 24, ..}
= Eval(Eval(y, {y — 3} +ppius x) +
Val 12,{y — 3} +Pplus_x) =~
= Eval(val 3 + Val 12 ,{y — 3} +ppjys x) =>
= Val (3 + 12) = Val 15

9/12/22 22

‘ Evaluation of Application of plus_pair

= Assume environment

p=4{x—3.,
plus_pair -»<(n,m) -n + m, pplus_pair>} * Pplus_pair
Eval (plus_pair (4,x), p)=>

Eval (plus_pair (Eval ((4, x), p)), p) =>

Eval (plus_pair (Eval ((4, Eval (x, p)), p)), p) =>
Eval (plus_pair (Eval ((4, Val 3), p)), p) =>

Eval (plus_pair (Eval ((Eval (4, p), Val 3), p)), p) =>
Eval (plus_pair (Eval ((Val 4, Val 3), p)), p) =>

9/12/22 23

‘ Evaluation of Application of plus_pair

= Assume environment

p={x—3.,
plus_pair —‘><(n,m) —n+m, pplus_pair>} + Pplus_pair
Eval (plus_pair (Eval ((Val 4, Val 3), p)), p) =>

Eval (plus_pair (Val (4, 3)), p) =>

Eval (Eval (plus_pair, p), Val (4, 3)), p) => ...

Eval ((Val<(n,m)—n+m, ppus pair>)(Val(4,3)) , p)=>
Eval (n + m, {n -> 4, m -> 3} + pps pair) =>

Eval (4 + 3, {n->4, m-> 3} + ppys pair) => 7

9/12/22 2%

‘ Lists

= List can take one of two forms:
= Empty list, written []
= Non-empty list, written x :: xs
= X is head element, xs is tail list, :: called
“cons”
= Syntactic sugar: [x] ==x:: []
s [X1; X2, o xn]==x1:ux2: . axn[]

9/12/22 25

‘ Lists

let fib5 = [8;5;3;2;1;1];;

val fib5 :intlist =[8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 :int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- i]nt list=1[8;5;3;2;,1;1;13; 8;5; 3; 2; 1;
1

9/12/22 26

‘ Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NAANN

This expression has type float but is here
used with type int

9/12/22 27

‘ Question

= Which one of these lists is invalid?

. [2; 3; 4; 6]

. [2,3; 4,5, 6,7]

. [(2.3,4); (3.2,5); (6,7.2)]

. [[“hi”; “there”]; [“wahcha”]; [1; [“doin”]]

A W N -

9/12/22 28

‘ Answer

= Which one of these lists is invalid?

[2; 3; 4; 6]

[2,3; 4,5; 6,7]

[(2.3,4); (3.2,5); (6,7.2)]

[[“hi”; “there”]; [“wahcha”]; [1; [“doin”]]

A W=

= 3 is invalid because of last pair

9/12/22 29

‘ Functions Over Lists

let rec double_up list =
match list
with []->[] (* pattern before ->,
expression after *)
| (x ::xs)->(x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist =[8; 8; 5; 5; 3; 3; 2; 2; 1;
1;1; 1]

9/12/22 30

‘ Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with [1->[]

| (x::xs) -> poor_rev xs @ [X];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/12/22 31

‘ Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/12/22 32

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?
let rec length list =

9/12/22 33

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?

let rec length list =
match list with

9/12/22 34

‘ Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length list =
match list with

9/12/22 35

‘ Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length list =
match list with [] ->
| (@:: bs)->

9/12/22 36

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is empty?

let rec length list =
match list with []-> 0
| (a:: bs)->

9/12/22 37

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is not empty?
let rec length list =
match list with []-> 0
| (a::bs)->

9/12/22 38

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is not empty?

let rec length list =
match list with [] -> 0
| (@::bs)->1+ length bs

9/12/22 39

‘ Structural Recursion : List Example

let rec length list = match list
with[]-> 0 (* Nil case *)
| @ :: bs-> 1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
-:int=4

= Nil case [] is base case

= Cons case recurses on component list bs

9/12/22 40

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

9/12/22 a

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/12/22 2

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =

9/12/22 43

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doublelList list =
match list
with [] ->[]
| x::xs->(2*x):: doubleList xs

9/12/22 44

;‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->
| :: xs|-> (2 * x) :| doubleList xs
. A

9/12/22 45

‘ Higher-Order Functions Over Lists

let rec map f list =
match list
with []-> []
| (h::t) -> (fh) :: (map ft);;
val map : (‘a->'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
vintlist =[12; 7; 4; 2; 1; 0; 0]

9/12/22 46

‘ Higher-Order Functions Over Lists

let rec map f list =

match list

with [] -

| :: ->[(Fn)|::[(map fo)};
val map-: (‘a~<> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
-:intlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
vintlist = [12; 7; 4; 2; 1; 0; 0]

9/12/22 47

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doublelList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelList [2;3;4];;
- 1 int list = [4; 6; 8]

9/12/22 48

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelList [2;3;4];;
- rint list = [4; 6, 8]

= Same function, but no explicit recursion

9/12/22 49

‘ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

9/12/22 50

‘ Folding Recursion : Length Example

let rec length list = match list
with [T-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
-:int=4

= Nil case [] is base case, 0 is the base value
= Cons case recurses on component list bs

= What do multList and length have in common?

9/12/22 51

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

9/12/22 52

‘ Forward Recursion: Examples

let rec double_up list =
match list
with[]->1]]
| (X ::xs)->(x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with []->[]
| (X::xs) -> let r = poor_rev xsinr @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/12/22 53

Forward Recursion: Examples

let rec double_up list =

match list
with [] ->
| (x 2 x8) ->[(x :: x ::|double_up xs);;
val double/up : 'aTist ->f"a [ist = <fuR=_
| Base Case | | Operator || Recursive Call|
let rec poor_rev list =
match list

with []->
| (x::x?/->| let r = poor_rev xs in r|i@ [x];; |

poor_rev : 'a list -> 'a list =~<fup>"

Base Case | | Operator || Recursive Call|

9/12/22 54

va

Recursing over lists

let rec fold_right f list b =
match list :
with []->b The Primitive
| (x :: xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right : ('a->'b->'b) ->"alist->'b->'b =

<fun>

fold_right

(fun s -> fun () -> print_string s)
["hi"; "there"]
Or7

therehi- : unit = ()w

9/12/22 55

’ Folding Recursion : Length Example

let rec length list = match list
with [1-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
let length list =
fold_right (funa -> funr->1 +r) list 0;;
val length : 'a list -> int = <fun>
length [5; 4; 3; 21;;
-:int=4

9/12/22 56

‘ Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

9/12/22 57

Forward Recursion: Examples

let rec double_up list =
match list

with [] -

| (x::

val double

Base Case

let double_up =

fold_right (fun x -> funr ->|>_(X ::|[F[) Iist
[Operator] [Recursive resullfl?a; Case |

double_up ["a";"b"];;

- : string ||St - [lla"; llall; llbll; Ilbll]

5) ->[(x :: x ::]double_up xs);;
: 'alist ->f"a [ist = <funrx_
| Operator || Recursive Call|

9/12/22 58

‘ Encoding Forward Recursion with Fold

let rec append listl list2 =

val append : 'a list -> 'a list -> 'a list = <fun>

9/12/22 59

’ Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with

val append : 'a list -> 'a list -> 'a list = <fun>

9/12/22 60

‘ Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[]->list2
val append : 'a list -> 'a list -> 'a list = <fun>

9/12/22 61

’ Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with

val append : 'a list -> 'a list -> 'a list = <fun>

Base Case

9/12/22 62

‘ Encoding Forward Recursion with Fold

let rec append listl list2 = match list1 with
[1->list2 | x::xs ->

val append : 'a list -> 'a list -> 'a list = <fun>

Base Case

9/12/22 63

’ Encoding Forward Recursion with Fold

let rec append listl list2 = match list1 with
[1->|list2 || x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

Base Case

9/12/22 64

‘ Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with

[1->[list2 || x::xs ->[x ::|eppend xs list2;;
val append : 'a list -> 'a/list -> 'a\l'S\t= <fun>

| Base Case | |Operation || Recursive Call |

9/12/22 65

’ Encoding Forward Recursion with Fold

let rec append listl list2 = match list1 with

[1->|list2 || x::xs ->[x ::|bppend xs Tist2;;
val append : 'a list -> 'a/list -> 'a\l'sKt= <fun>

| Base Case | |Operation || Recursive Call |

let append list1 list2 =
fold_right (fun x -> funy ->
val append : 'a list -> 'a list -> 'a list = <fun>

9/12/22 66

‘ Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with

[1->[list2 || x::xs ->[x ::|eppend xs Tlist2;;
val append : 'a list -> 'a/list -> 'a\l'sKt: <fun>

| Base Case | |Operation || Recursive Call |

let append list1 list2 =
fold_right (fun x -> funy ->

val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;

-rintlist = [1; 2; 3; 4; 5; 6]

9/12/22 67

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

9/12/22 68

‘ Tail Recursion - length

= How can we write length with tail recursion?
let length list =
let rec length_aux list acc_length =
match list
with [] -> acc_length
| (X::xs) ->
length_aux xs (1 + acc_length)
in length_aux list 0

9/12/22 69

‘ Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X 2 xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/12/22 70

‘ Comparison

= poor_rev [1;2;3] =

= (poor_rev [2;3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @ [3]) @ [2]) @ [1] =
= ([J@[B)@[2])) @[1]) =

« (B1@[2]) @[1] =

= Bu((l@2)) @[1] =

= [3;2]@[1] =

« 3 (2]@[1)) =

= 3 u([1@[1]) =1[3; 2; 1]

9/12/22 71

‘ Comparison

rev [1;2;3] =

rev_aux [1;2;3][] =
rev_aux [2;3] [1] =

rev_aux [3] [2;1] =

rev_aux [][3;2;1] = [3;2;1]

9/12/22 72

Iterating over lists

let rec fold_left f a list =
match list
with []-> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a->'b->"'a)->"'a->'blist->'a =
<fun>
fold_left
(fun () -> print_string)
0
["hi"; "there"];;
hithere- : unit = ()

9/12/22 73

‘ Folding - Tail Recursion

- # letrev list =
fold_left
(funl->funx->x::1) //comb op
[] //accumulator cell
list

9/12/22 74

‘ Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: (a->'b->"a)->'a->'blist->'a =
<fun>

fold_left f a [xy; Xp;...;%n] = f(...(F (f @ X1) X2)...)%p

let rec fold_right f list b = match list
with []-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->"'b) ->'alist->'b->'b =
<fun>

fold_right f [Xy; X3;...;%,] b = f x;(f x5 (...(f x, b)...))

9/12/22 75

‘ Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

9/12/22 76

‘ How long will it take?

= Remember the big-O notation from CS 225
and CS 374

= Question: given input of size 1, how long to
generate output?

= Express output time in terms of input size,
omit constants and take biggest power

9/12/22 77

‘ How long will it take?

Common big-O times:
= Constant time O (1)
= input size doesn’t matter
= Linear time O (n)
= double input = double time
= Quadratic time O (?)
= double input = quadruple time
= Exponential time O (27)
= increment input = double time

9/12/22 78

‘ Linear Time

= Expect most list operations to take
linear time O (n)

= Each step of the recursion can be done
in constant time

= Each step makes only one recursive call
= List example: multList, append
= Integer example: factorial

9/12/22 79

‘ Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with []-> []
| (x::xs) -> poor_rev xs|@|[x];;
val poor_rev : 'a list -> "a list = <fun>

9/12/22 80

‘ Exponential running time

= Poor worst-case running times on input of
any size

= Each step of recursion takes constant time

= Each recursion makes two recursive calls

= Easy to write naive code that is exponential

for functions that can be linear

9/12/22 81

‘ Exponential running time

let rec slow n =

ifn<=1

then 1

else 1+slow (n-1) + slow(n-2);;
val slow : int -> int = <fun>
List.map slow [1;2;3;4;5,6;7;8;9];;
-:intlist =[1; 3; 5; 9; 15; 25; 41; 67;

109]

9/12/22 82

‘ An Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know
to where to return when the
h call is finished

g = What if fcalls gand g calls 5,
r but calling A is the last thing g
does (a tail call)?

TR

9/12/22 83

‘ An Important Optimization

= When a function call is made,
Tail the return address needs to be
call saved to the stack so we know
to where to return when the
p h call is finished
[f = What if fcalls gand g calls A,
but calling A is the last thing g
does (a tail call)?

= Then /A can return directly to 7
instead of g

9/12/22 84

