
8/25/22 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2021

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2021

Programming Languages & Compilers

8/25/22 2

I

New
Programming

Paradigm

II

Language
Translation

III

Language
Semantics

Three Main Topics of the Course

Programming Languages & Compilers

8/25/22 3

I

New
Programming

Paradigm

II

Language
Translation

III

Language
Semantics

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

8/25/22 4

Functional
Programming

Environments
and

Closures

Continuation
Passing

Style

Patterns of
Recursion

I : New Programming Paradigm

Programming Languages & Compilers

8/25/22 5

Functional
Programming

Environments
and

Closures

Continuation
Passing

Style

Patterns of
Recursion

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

8/25/22 6

Lexing and
Parsing

Type
Systems

Interpretation

II : Language Translation

Programming Languages & Compilers

8/25/22 7

Lexing and
Parsing

Type
Systems

Interpretation

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

8/25/22 8

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

III : Language Semantics

Programming Languages & Compilers

8/25/22 9

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

CS422 CS426
CS477

Order of Evaluation

Specification to Implementation

8/25/22 10

Contact Information - Elsa L Gunter

n Office: 2112 SC , also Zoom
n Office hours:

n Thursday 10:30am – 11:20am
n Thursday 3:45pm – 2:20pm
n Also by appointment

n Email: egunter@illinois.edu

mailto:egunter@illinois.edu

Course TAs

8/26/22 11

John LeePaul Krogmeier

Haoqing Zhu

Dan Plyukhin

Luhao Wang

8/25/22 12

Course Website

n https://courses.engr.illinois.edu/cs421/fa2022

n Main page - summary of news items
n Policy - rules governing course
n Lectures - syllabus and slides
n MPs - information about assignments
n Exams
n Unit Projects - for 4 credit students
n Resources - tools and helpful info
n FAQ

Some Course References

n No required textbook
n Some suggested references

8/25/22 13

8/25/22 14

Some Course References

n No required textbook.
n Pictures of the books on previous slide
n Essentials of Programming Languages (2nd Edition)

by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

n Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN: 0-
201-10088-6.

n Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

n Additional ones for Ocaml given separately

8/25/22 15

Course Grading

n Assignments 10%
n Web Assignments (WA) (~5%)
n MPs (in Ocaml) (5~%)
n All WAs and MPs Submitted by PrairieLearn
n Late submission penalty: 20% to total

8/26/22 16

Course Grading

n 2 Midterms - 25% each
n Sep 29, Nov 10
n BE AVAILABLE FOR THESE DATES!

n Final 40%
n Fall back: 7:00pm-10:00pm., Tuesday Dec.

13
n Percentages are approximate

8/25/22 17

Course Assingments – WA & MP

n You may discuss assignments and their solutions with
others

n You may work in groups, but you must list members
with whom you worked if you share solutions or
solution outlines

n Each student must write up and turn in their
own solution separately

n You may look at examples from class and other similar
examples from any source – cite appropriately
n Note: University policy on plagiarism still holds - cite

your sources if you are not the sole author of your
solution

n Do not have to cite course notes or me

8/25/22 19

OCAML

n Locally:
n Will use ocaml inside VSCode inside PrairieLearn

problems this semester
n Globally:

n Main CAML home: http://ocaml.org
n To install OCAML on your computer see:

http://ocaml.org/docs/install.html
n To try on the web: https://try.ocamlpro.com
n More notes on this later

http://ocaml.org
http://ocaml.org/docs/install.html
https://try.ocamlpro.com/

8/25/22 20

References for OCaml

n Supplemental texts (not required):

n The Objective Caml system release 4.05, by
Xavier Leroy, online manual

n Introduction to the Objective Caml
Programming Language, by Jason Hickey

n Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’Reilly
n Available online from course resources

8/25/22 23

Why learn OCAML?

n Many features not clearly in languages you have
already learned

n Assumed basis for much research in programming
language research

n OCAML is particularly efficient for programming tasks
involving languages (eg parsing, compilers, user
interfaces)

n Industrially Relevant:
n Jane Street trades billions of dollars per day using OCaml

programs
n Major language supported at Bloomberg

n Similar languages: Microsoft F#, SML, Haskell, Scala

8/25/22 24

Session in OCAML

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop; expressions and

declarations *)
2 + 3;; (* Expression *)

- : int = 5
3 < 2;;
- : bool = false

8/25/22 25

No Overloading for Basic Arithmetic Operations

15 * 2;;
- : int = 30
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
1.35 + 0.23;; (* Wrong type of addition *)
^^^^

Error: This expression has type float but an
expression was expected of type

int
1.35 +. 0.23;;
- : float = 1.58

No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;; (* No Implicit Coercion *)
^^^

Error: This expression has type float but an
expression was expected of type

int

8/25/22 26

8/25/22 27

Sequencing Expressions

"Hi there";; (* has type string *)
- : string = "Hi there"
print_string "Hello world\n";; (* has type unit *)
Hello world
- : unit = ()
(print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye
- : int = 25

Declarations; Sequencing of Declarations

let x = 2 + 3;; (* declaration *)
val x : int = 5
let test = 3 < 2;;
val test : bool = false
let a = 1 let b = a + 4;; (* Sequence of dec

*)
val a : int = 1
val b : int = 5

8/25/22 28

8/25/22 29

Booleans (aka Truth Values)

true;;
- : bool = true
false;;
- : bool = false
// r7 = {c ® 4, test ® 3.7, a ® 1, b ® 5}
if b > a then 25 else 0;;
- : int = 25

8/25/22 30

Booleans and Short-Circuit Evaluation

3 > 1 && 4 > 6;;
- : bool = false
3 > 1 || 4 > 6;;
- : bool = true
(print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi
- : bool = true
3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true
not (4 > 6);;
- : bool = true

8/25/22 31

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

8/25/22 32

Functions

let plus_two n = n + 2;;

plus_two 17;;
- : int = 19

8/25/22 33

Nameless Functions (aka Lambda Terms)

fun n -> n + 2;;

(fun n -> n + 2) 17;;
- : int = 19

8/25/22 34

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19
let plus_two = fun n -> n + 2;;
val plus_two : int -> int = <fun>
plus_two 14;;
- : int = 16
First definition syntactic sugar for second

8/25/22 35

Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let add_three =

fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

8/25/22 36

Using a nameless function

(fun x -> x * 3) 5;; (* An application *)
- : int = 15
((fun y -> y +. 2.0), (fun z -> z * 3));;

(* As data *)
- : (float -> float) * (int -> int) = (<fun>,

<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

8/25/22 37

Environments

n Environments record what value is associated with
a given identifier

n Central to the semantics and implementation of a
language

n Notation
r = {name1 ® value1, name2® value2, …}

Using set notation, but describes a partial function
n Often stored as list, or stack

n To find value start from left and take first match

Environments

8/25/22 38

X è 3

y è 17

name è “Steve”

b è true

region è (5.4, 3.7)

id è {Name = “Paul”,
Age = 23,
SSN = 999888777}

. . .

8/25/22 39

Global Variable Creation

2 + 3;; (* Expression *)
// doesn’t affect the environment
let test = 3 < 2;; (* Declaration *)
val test : bool = false
// r1 = {test ® false}
let a = 1 let b = a + 4;; (* Seq of dec *)
// r2 = {b ® 5, a ® 1, test ® false}

Environments

8/25/22 40

b è 5

test è true

a è 1

New Bindings Hide Old

// r2 = {b ® 5, a ® 1, test ® false}
let test = 3.7;;

n What is the environment after this
declaration?

8/25/22 41

New Bindings Hide Old

// r2 = {b ® 5, a ® 1, test ® false}
let test = 3.7;;

n What is the environment after this
declaration?

// r3 = {test ® 3.7, a ® 1, b ® 5}

8/25/22 42

Environments

8/25/22 43

b è 5

test è 3.7

a è 1

Now it’s your turn

You should be able to do WA1-IC
Problem 1 , parts (* 1 *) - (* 3 *)

8/25/22 44

8/25/22 45

Local Variable Creation

// r3 = {test ® 3.7, a ® 1, b ® 5}
let b = 5 * 4
// r4 = {b ® 20, test ® 3.7, a ® 1}

in 2 * b;;
- : int = 40
// r5 = r3= {test ® 3.7, a ® 1, b ® 5}
b;;
- : int = 5

b è 5

test è 3.7
a è 1

b è 5

test è 3.7
a è 1

b è 20

b è 5

test è 3.7
a è 1

// r5 =r3 ={test ® 3.7, a ® 1, b ® 5}
let c =

let b = a + a
// r6 = {b ® 2} + r3
// ={b ® 2, test ® 3.7, a ® 1}

in b * b;;
val c : int = 4
// r7 = {c ® 4, test ® 3.7, a ® 1, b ® 5}
b;;
- : int = 5

8/25/22 46

Local let binding

b è 5

test è 3.7a è 1

// r5 =r3 ={test ® 3.7, a ® 1, b ® 5}
let c =

let b = a + a
// r6 = {b ® 2} + r3
// ={b ® 2, test ® 3.7, a ® 1}

in b * b;;
val c : int = 4
// r7 = {c ® 4, test ® 3.7, a ® 1, b ® 5}
b;;
- : int = 5

b è 5

test è 3.7a è 1

8/25/22 47

Local let binding

b è 5

test è 3.7a è 1

b è 2

// r5 =r3 ={test ® 3.7, a ® 1, b ® 5}
let c =

let b = a + a
// r6 = {b ® 2} + r3
// ={b ® 2, test ® 3.7, a ® 1}

in b * b;;
val c : int = 4
// r7 = {c ® 4, test ® 3.7, a ® 1, b ® 5}
b;;
- : int = 5

b è 5

test è 3.7a è 1

8/25/22 48

Local let binding

b è 5

test è 3.7a è 1

b è 2

b è 5

test è 3.7a è 1
c è 4

8/25/22 49

Values fixed at declaration time

let x = 12;;
val x : int = 12
let plus_x y = y + x;;
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

X è 12
…

8/25/22 50

Values fixed at declaration time

let x = 12;;
val x : int = 12
let plus_x y = y + x;;
val plus_x : int -> int = <fun>
plus_x 3;;
- : int = 15

8/25/22 51

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7

plus_x 3;;

What is the result this time?

8/25/22 52

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7

plus_x 3;;

What is the result this time?

X è 12
…

X è 7
…

8/25/22 53

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7

plus_x 3;;
- : int = 15

8/25/22 54

Question

n Observation: Functions are first-class values
in this language

n Question: What value does the environment
record for a function variable?

n Answer: a closure

8/25/22 55

Save the Environment!

n A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

f ® < (v1,…,vn) ® exp, rf >
n Where rf is the environment in effect when f

is defined (if f is a simple function)

8/25/22 56

Closure for plus_x

n When plus_x was defined, had environment:
rplus_x = {…, x ® 12, …}

n Recall: let plus_x y = y + x
is really let plus_x = fun y -> y + x

n Closure for fun y -> y + x:
<y ® y + x, rplus_x >

n Environment just after plus_x defined:
{plus_x ® <y ® y + x, rplus_x >} + rplus_x

Now it’s your turn

You should be able to do WA1-IC
Problem 1 , parts (* 4 *) - (* 7 *)

8/25/22 57

