Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/fa2021

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/25/22

https://courses.engr.illinois.edu/cs421/fa2021

i Programming Languages & Compilers

Three Main Topics of the Course

New
Programming
Paradigm

Language
Translation

Language
Semantics

8/25/22 2

i Programming Languages & Compilers

Order of Evaluation

Language L
MINg T —Hansiaben— | Semantics

C

Specification to Implementation

8/25/22 3

i Programming Languages & Compilers

| : New Programming Paradigm

Functional |[Environments|/Patterns of || Continuation

Programming and Recursion Passing

Closures Style

8/25/22 4

Programmmg Languages & Compilers

Order of Evaluation

Functionrs

Enwronment Patterns of satinuation
Programmlng |

Closures

Specification to Implementation

8/25/22 5

i Programming Languages & Compilers

Il : Language Translation

Lexing and

Interpretation
Parsing

8/25/22 6

i Programming Languages & Compilers

Order of Evaluation

Specification to Implementation

8/25/22 7

i Programming Languages & Compilers

lll : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

8/25/22 8

i Programming Languages & Compilers

Order of Evaluation

Specification to Implementation

8/25/22 9

i Contact Information - Elsa L Gunter

= Office: 2112 SC, also Zoom

= Office hours:
= Thursday 10:30am — 11:20am
= Thursday 3:45pm — 2:20pm
= Also by appointment

= Email: eqgunter@illinois.edu

8/25/22

10

mailto:egunter@illinois.edu

Paul Krogmeier John Lee Dan Plyukhin

Luhao Wang Haoqing Zhu

8/26/22 11

i Course Website

= https://courses.engr.illinois.edu/cs421/fa2022
= Main page - summary of news items
= Policy - rules governing course

= Lectures - syllabus and slides

= MPs - information about assignments
= Exams

= Unit Projects - for 4 credit students

= Resources - tools and helpful info

= FAQ

8/25/22

12

& Some Course References

= No required textbook
= Some suggested references

modern

: compiler
implementation
% in ML

Compilers

. /ESSENTIALS
OF PROGRAMMING
:\ N _\\LA N G uA}G E S z

8/25/22

i Some Course References

No required textbook.
Pictures of the books on previous slide

Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN: O-
201-10088-6.

Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

Additional ones for Ocaml given separately

8/25/22 14

i Course Grading

= Assignments 10%
= Web Assignments (WA) (~5%)
= MPs (in Ocaml) (5~%)
=« All WAs and MPs Submitted by PrairieLearn
= Late submission penalty: 20% to total

8/25/22

15

i Course Grading

x 2 Midterms - 25% each
= Sep 29, Nov 10

= BE AVAILABLE FOR THESE DATES!

= Final 40%
= Fall back: 7:00pm-10:00pm., Tuesday Dec.
13

= Percentages are approximate

8/26/22 16

i Course Assingments — WA & MP

= You may discuss assignments and their solutions with
others

= You may work in groups, but you must list members
with whom you worked if you share solutions or
solution outlines

= Each student must write up and turn in their
own solution separately

= You may look at examples from class and other similar
examples from any source — cite appropriately

= Note: University policy on plagiarism still holds - cite
yolur sources if you are not the sole author of your
solution

= Do not have to cite course notes or me

8/25/22 17

i OCAML

= Locally:

= Will use ocaml inside VSCode inside PrairieLearn
problems this semester

= Globally:
= Main CAML home: http://ocaml.org

= T0 install OCAML on your computer see:
http://ocaml.org/docs/install.html

= T0 try on the web: https://try.ocamlipro.com
= More notes on this later

8/25/22 19

http://ocaml.org
http://ocaml.org/docs/install.html
https://try.ocamlpro.com/

i References for OCam

= Supplemental texts (not required):

= The Objective Caml system release 4.05, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’ Reilly

= Available online from course resources

8/25/22 20

i Why learn OCAML?

= Many features not clearly in languages you have
already learned

= Assumed basis for much research in programming
language research

= OCAML is particularly efficient for programming tasks
involving languages (eg parsing, compilers, user
interfaces)

= Industrially Relevant:

= Jane Street trades billions of dollars per day using OCaml
programs

= Major language supported at Bloomberg
= Similar languages: Microsoft F#, SML, Haskell, Scala

8/25/22 23

i Session in OCAML

% ocaml
Objective Caml version 4.07.1

(* Read-eval-print loop; expressions and
declarations

2+ 3 (* Expression *)
- 1int=5
#3<2:;
- : bool = false

8/25/22

24

i No Overloading for Basic Arithmetic Operations

15« 2;;
- int = 30
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
1.35 + 0.23;; (* Wrong type of addition *)

NANNN

Error: This expression has type float but an
expression was expected of type

INt
1.35 +. 0.23;;
- : float = 1.58

8/25/22 25

i No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;: (* No Implicit Coercion *)
NN/N

Error: This expression has type float but an
expression was expected of type

INt

8/25/22

26

i Sequencing Expressions

"Hi there";; (* has type string *)
- : string = "Hi there"

"Hello world\n";; (* has type unit *)
Hello world

- 1 unit = ()

(print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye

-:int =25

8/25/22 27

i Declarations; Sequencing of Declarations

#letx =2+ 3;; (* declaration *)
val x:int=5
lettest =3 < 2;;

val test : bool = false

#leta=1letb =a + 4;; (* Sequence of dec
*)

vala:int=1

valb:int=5

8/25/22 28

i Booleans (aka Truth Values)

true;;

- : bool = true

false;;

- : bool = false

/| pp={c—>4,test > 3.7,a—>1,b— 5}
#1f b > athen 25 else 0;;

-1int = 25

8/25/22

29

i Booleans and Short-Circuit Evaluation

#3>18224>6::

- : bool = false

#3>11|4>6::

- : bool = true

(print_string "Hi\n"; 3> 1) || 4 > 6;;
Hi

- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

not (4 > 6);;

- : bool = true

8/25/22 30

i Functions

let plus_ twon=n+ 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int =19

8/25/22

31

i Functions

let plus_two nI =n+2;;

/

plus_two 17;;
-:int =19

8/25/22

32

i Nameless Functions (aka Lambda Terms)

funn->n+ 2;;

"i"""'!- .
(funn->n+2)17;;
-:int=1

8/25/22 33

i Functions

let plus_ twon=n+ 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-1 int =19

let plus_two = n->n+2;;

val plus_two : int -> int = <fun>

plus_two 14;;

- int =16

| First definition syntactic sugar for second|

8/25/22

34

i Functions with more than one argument

let add threexyz=x+vy + z;;
val add three : int -> int -> int -> int = <fun>
lett = add_three 6 3 2;;
valt:int=11
let add_three =
funx-> (funy->(funz->x+vy+2);;
val add three : int -> int -> int -> int = <fun>

| Again, first syntactic sugar for second |

8/25/22 35

i Using a nameless function

(funx->x*3)5;; (* An application *)

-:int =15

((funy->y +.2.0), (funz->z*3));;
(* As data *)

- . (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

8/25/22 36

i Environments

s Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language

= Notation

p = {name; — value;, name,— value,, ...}
Using set notation, but describes a partial function

= Often stored as list, or stack
= 10 find value start from left and take first match

8/25/22 37

i Environments

X = 3 name = “Steve”

vy D> 17 region = (5.4, 3.7)

_ id & {Name = “Paul’, \
b = true Age = 23,
SSN = 999888777}

—_—

8/25/22 38

i Global Variable Creation

#2+ 3;; (* Expression *)

// doesn’ t affect the environment

let test = 3 < 2;; (* Declaration *)
val test : bool = false

/] p; = {test — false}

#leta=1letb =a + 4;; (* Seq of dec *)
/| p» ={b —> 5, a— 1, test - false}

8/25/22 39

i Environments

test = true

b=>5

8/25/22

40

i New Bindings Hide Old

/| p> ={b—>5,a—> 1, test — false}
let test = 3.7;;

s What is the environment after this
declaration?

8/25/22

41

i New Bindings Hide Old

/| p> ={b—>5,a—> 1, test — false}
let test = 3.7;;

s What is the environment after this
declaration?

[/ p3={test > 3.7, a—>1,b— 5}

8/25/22

42

i Environments

8/25/22

43

Now it's your turn

You should be able to do WA1-IC
Problem 1, parts (* 1 *) - (* 3 *)

8/25/22 44

i Local Variable Creation

/[p3={test > 3.7, a—>1,b—> 5@

#letb=5%*4
/] p4 ={b — 20,

test = 3.7

[/ ps = p3={test - 3.7, a—>1,b—>5} |
b;; 5 test = 3.7

b=>5

-:int=5

8/25/22 45

i Local let binding

/] ps =p3={test > 3.7, a—>1,b
letc =

letb =
[l pe =1b—> 2} + p;
// ={b - 2, test - 3.7, a > 1}
nb*b;;
valc:int=4
/| p={c—>4,test > 3.7,a—>1,b— 5}
b;;
-:int=5

test = 3.7
b=>5

8/25/22 46

i Local let binding

/] ps=p3={test > 3.7, a—>1,b
letc =

letb =
[l pe =1b—> 2} + p;
// ={b - 2, test 37—
in b ¥ b:
valc:int=4
/| p={c—>4,test >3.7,a—>1,b—>5}
b;;
-:int=5

1 test = 3.7

8/25/22 47

i Local let binding

a 1 test = 3.7

/] ps=p3={test > 3.7, a—>1,b . .
let c = /
|et b = ‘ii‘l\

01 test>37
// p6={b—)2}+ ' &
/| ={b— 2 test »IPw 1}

in b b; L3 test>37
valc:int=4 T34 b5
/| p={c—>4,test > 3.7, a—>1,b—> 5}
b;;
-:int=5

8/25/22 48

i Values fixed at declaration time

#letx = 12:; >
val x :int = 12

let plus_x yf=\y + X;:
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

8/25/22

49

i Values fixed at declaration time

#letx = 12;;

val X 1 int = 12

#letplus Xy =vy + x;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int =15

8/25/22

50

i Values fixed at declaration time

#let x =7;; (* New declaration, not an
update *)
val X :int = 7

plus_x 3;;

What is the result this time?

8/25/22

51

i Values fixed at declaration time

#letx =7;; (* New declaration, nat an
update *)

val X : int =7

8
' plus_xJ3;;

What is the result this time?

8/25/22

52

i Values fixed at declaration time

#let x =7;; (* New declaration, not an
update *)
val X :int = 7

plus_x 3;;
-:int =15

8/25/22

53

i Question

s Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

s Answer: a closure

8/25/22 54

i Save the Environment!

= A closureis a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:
f— < (vl,...,vn) > exp, pr >

= Where ps is the environment in effect when f
is defined (if f is a simple function)

8/25/22 55

i Closure for plus_x

= When plus_x was defined, had environment:

pplus_x — {, X — 12, }
= Recall: let plus_xy =y + X

is really let plus_ x =funy ->y + x
= Closure for funy -> vy + x:
<y —>YVY + X, Pplus_x >
= Environment just after plus_x defined:

{plus_x — <y =¥ + X, pplus_x >+ + Pplus_x

8/25/22

56

Now it's your turn

You should be able to do WA1-IC
Problem 1, parts (* 4 *) - (* 7 *)

8/25/22

57

