
Sample Questions for Midterm 2 (CS 421 Fall 2022)

Some of these questions may be reused for the exam.

0. Review and be able to write any give clause of cps_exp from MP5. On the exam, you would

be given all the information you were given in MP5.

1. Write the definition of an OCAML variant type reg_exp to express abstract syntax trees for
regular expressions over a base character set of booleans. Thus, a boolean is a reg_exp, epsilon
is a reg_exp, a parenthesized reg_exp is a reg_exp, the concatenation of two reg_exp’s is a
reg_exp, the “choice” of two reg_exp’s is a reg_exp, and the Kleene star of a reg_exp is a
reg_exp.

2. Given the following OCAML datatype:
type int_seq = Null | Snoc of (int_seq * int)

write a tail-recursive function in OCAML all_pos : int_seq -> bool that returns true if every
integer in the input int_seq to which all_pos is applied is strictly greater than 0 and false
otherwise. Thus all_pos (Snoc(Snoc(Snoc(Null, 3), 5), 7)) should returns true, but

all_pos (Snoc(Null, -1)) and all_pos (Snoc(Snoc(Null, 3),0)) should both return false.
3. Given a polymorphic type derivation for {} |- let id = fun x -> x in id id true : bool
4. Write the clause for gather_exp_ty_substitution for a function expression implementing the

rule:
[x : t1] + G |- e : t2 | s

G |- (fun x -> e) : t | unify{(s(t), s(t1 -> t2))} o s
Refer to MP6 for the details of the types. You should assume that all other clauses for
gather_exp_ty_substitution have been provided.

5. Give a (most general) unifier for the following unification instance. Capital letters denote
variables of unification. Show your work by listing the operation performed in each step of the
unification and the result of that step.

{X = f(g(x),W); h(y) = Y; f(Z,x) = f(Y,W)}
6. For each of the following descriptions, give a regular expression over the alphabet {a,b,c}, and

a regular grammar that generates the language described.
a. The set of all strings over {a, b, c}, where each string has at most one a

b. The set of all strings over {a, b, c}, where, in each string, every b is immediately followed

by at least one c.

c. The set of all strings over {a, b, c}, where every string has length a multiple of four.

7.Consider the following grammar:
<S> ::= <A> | <A> <S>
<A> ::= <Id> | (
 ::= <Id>] | <Id> | (
<Id> ::= 0 | 1

For each of the following strings, give a parse tree for the following expression as an <S>, if
one exists, or write “No parse” otherwise:

a. (0 1 (1] ((1 0] 1
b. 0 (1 0 (1]
c. (0 (1 0 1] 0]

8. Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase

are terminals):
S ::= A a B | B a A
A ::= b | c
B ::= a | b

9. Write an unambiguous grammar generating the set of all strings over the alphabet {0, 1, +, -},
where + and – are infixed operators which both associate to the left and such that + binds more
tightly than -.

