Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/28/17

i Lambda Calculus - Motivation

= Aim is to capture the essence of
functions, function applications, and
evaluation

= A—Calculus is a theory of computation

= ' The Lambda Calculus: Its Syntax and
Semantics”. H. P. Barendregt. North
Holland, 1984

11/28/17

i Lambda Calculus - Motivation

= All sequential programs may be viewed
as functions from input (initial state and
input values) to output (resulting state
and output values).

= A-calculus is @ mathematical formalism
of functions and functional
computations

= Two flavors: typed and untyped

11/28/17

i Untyped A-Calculus

= Only three kinds of
expressions:

«Variables: x, y, z, w, ...

= Abstraction: A Xx. e
(Function creation, think fun x -> e)

= Application: e, e,

11/28/17

‘-L Untyped A-Calculus Grammar

= Formal BNF Grammar:

= <expression> ::= <variable>
<abstraction>
<application>
(<expression>)

= <abstraction>

::= A<variable>.<expression>
= <application>
.= <expression> <expression>

11/28/17 5

i Untyped A-Calculus Terminology

s Occurrence: a location of a subterm in a
term

= Variable binding: A\ X. e is a binding of x in e

s Bound occurrence: all occurrences of X in
A X €

s Free occurrence: one that is not bound

= Scope of binding: in A X. e, all occurrences in
e not in a subterm of the form A x. e’ (same

X)
= Free variables: all variables having free
occurrences In a term

11/28/17 6

i Example

= Label occurrences and scope:

(MX.YAY. Y (AX XY) X)X
12 34 56789

11/28/17

* Example

= Label occurrences and scope:

- fyel//\ free

(xx.y}\y.ay(kx/.\xy)x)ﬁ
12 34 56789

11/28/17

i Untyped A-Calculus

= How do you compute with the
A\-calculus?
= Roughly speaking, by substitution:

s (AX.e,) e, =*e, [e,/X]

= * Modulo all kinds of subtleties to avoid
free variable capture

11/28/17

i Transition Semantics for A-Calculus

E->E"’
EE -->E " F
= Application (version 1 - Lazy Evaluation)
(AXx.E) E --> HE /X]
= Application (version 2 - Eager Evaluation)
E -->E"’
(WNx.E)E"-->(AXx.E)E"’

(ML Xx.E) V--> FV/X]

V - variable or abstraction (value)

11/28/17 10

i How Powerful is the Untyped A-Calculus?

= The untyped A-calculus is Turing
Complete

= Can express any sequential computation

= Problems:

= How to express basic data: booleans,
integers, etc?

= How to express recursion?

= Constants, if _then_else, etc, are
conveniences; can be added as syntactic
sugar

11/28/17 11

i Typed vs Untyped A\-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT
Turing Complete (no recursion)

11/28/17 12

i Uses of A-Calculus

= Typed and untyped A-calculus used for
theoretical study of sequential
programming languages

= Sequential programming languages are
essentially the A-calculus, extended with
predefined constructs, constants, types,
and syntactic sugar

s Ocaml is close to the A-Calculus:
fun X -> exp --> A X. exp
letx = e, ine,--> (A X &)e

11/28/17 13

i o. Conversion

= o-conversion:
A X. exp --a--> A Y. (exp [y/X])
= Provided that
1. 'y is not free in exp

2. No free occurrence of x in exp
becomes bound in exp when
replaced by y

11/28/17

14

‘-L o. Conversion Non-Examples

1. Error: y is not free in termsecond
A X. xy><> AY.YVY

2. Error: free occurrence of x becomes
bound in wrong way when replaced by y

AX.ANY. xy,}(> ANY.AY. VY,
EXP exply/x]

But AX. (LY. y)X-0->AY.(AY.Y)Y
And Ay. (AY.Y)Y ——a—->AX. (AY.Y) X

11/28/17 15

i Congruence

= Let ~ be a relation on lambda
terms. ~ is a congruence if

= it is an equivalence relation

s If €, ~ e, then
= (ee) ~(ee)and (ee) ~ (e, €)
n }\,X. el N}\,X. ez

11/28/17

16

i o. Equivalence

= o equivalence is the smallest
congruence containing o
conversion

= One usually treats o-equivalent
terms as equal - i.e. use «
equivalence classes of terms

11/28/17 17

i Example

Show: A X. (AY. Y X)X ~a~ LY. (AX. XY)Y

s AX.(AY.YX)X—a—->ANZ. (NY.YZ)Z SO
AX.(AY. Y X)X ~voav AZ. (MY Y Z)Z

s (LY. Y 2Z)--0->(AX.XZ) SO
(LY.Yy Z) ~a~ (AX.X2Z) SO
NZ.(NY.YZ)Z~a~ ANz, (MX.X2Z)Z

s AZ. (AX.X2)Z-0->AY.(AX.XY)Y SO
NZ.(AX.XZ)Z~a~ AY. (WX XY)Y

s AX. (AY. Yy X)X ~vav AY. (AX. XY)Y

11/28/17 18

i Substitution

= Defined on a-equivalence classes of
terms

= P [N / x] means replace every free
occurrence of x in P by N

= P called redex; N called residue

= Provided that no variable free in P
becomes bound in P [N / x]

= Rename bound variables in P to avoid
capturing free variables of N

11/28/17 19

i Substitution

s X [N/ X]
=Y [N/X
= (e €) [
= (A X. €)

= (LY. e)

=N

N/ X

N/ X

=vyify=X
N/ x]=((e,[N/x])(e;[N/x]))

= (A X. €)
=AYy.(e[N/x])

provided y = x and y not free in N
=« Rename vy in redex if necessary

11/28/17

20

i Example

(Ay.yz)[(AX.xy) /2] =7
= Problems?
= Z in redex in scope of y binding
= y free in the residue
s (AY.Y2)[(MX. XY) /[z] —o-->
(DWW 2Z)[(MX.XY)/ z] =
AW. W (A X XY)

11/28/17

21

i Example

= Only replace free occurrences

s(AY.YZ(Mz.2)[(AX.X)/ 2] =
LY. Y (AX.X)(A2Z 2)

Not
LY. Y (AX X) (N z. (N X X))

11/28/17 22

i B reduction

= B Rule: (AX.P)N--8-->P [N /X]

= Essence of computation in the lambda
calculus

= Usually defined on a-equivalence
classes of terms

11/28/17 23

i Example

s (AMZ.(AX.XY)Z)(NY. Y Z)
-—B--> (A X. XY) (LY. Yy 2)
B> (AY.YZ)Y-p->yzZ

m (A X X X) (AX XX)
--B--> (A X. X X) (A X. X X)
-—B--> (A X. X X) (A X. X X) —-p--> ...

11/28/17

i a [Equivalence

= O 5 equivalence is the smallest
congruence containing o equivalence
and reduction

= A term is in normal form if no subterm
iS a equivalent to a term that can be p
reduced

= Hard fact (Church-Rosser): if e, and e,
are off-equivalent and both are normal
forms, then they are o equivalent

11/28/17 25

i Order of Evaluation

= Not all terms reduce to normal forms

= Not all reduction strategies will produce
a normal form if one exists

11/28/17

26

i Lazy evaluation:

= Always reduce the left-most application
in @ top-most series of applications (i.e.
Do not perform reduction inside an
abstraction)

= Stop when term is not an application, or

left-most application is not an
application of an abstraction to a term

11/28/17 27

i Example 1

s (AZ. (AX X)) (MY YY) (hy.yy))
= Lazy evaluation:

= Reduce the left-most application:

=(AZ. (A X X)) (MY YY) (hy.yY))
--B--> (A X. X)

11/28/17

28

i Eager evaluation

= (Eagerly) reduce left of top application
to an abstraction

= Then (eagerly) reduce argument
= Then p-reduce the application

11/28/17

29

i Example 1

= (A Z. (M)A Y. YY) (hy.yY))
= Eager evaluation:

= Reduce the rator of the top-most application to
an abstraction: Done.

= Reduce the argument:

s (AZ.(AXX)D)AY. YY) (LY. yy))
B> (A Z. (X X))(A Y. YY) (L y.yy))
B> (A Z. (M X XA Y. YY) My yy))...

11/28/17 30

i Example 2

s (AX. XX)(AY. VYY) (Az 2))
= Lazy evaluation:

(AX. X X)(AY.VY) Nz 2)-—-B-->

11/28/17

31

i Example 2

s (AX. XX)(AY. VYY) (Az 2))
= Lazy evaluation:

O %X XD Y. v Y) O z. 2)) --B-->

11/28/17

32

ﬁ Example 2

s (AX. XX)(AY. VYY) (Az 2)
= Lazy evaluation:

M X X X)((Ay. Y y) (2. 2)) B>

(Ay.y Y)Yz 2)((hy.y V) (\z 2)

11/28/17 33

i Example 2

s (AX. XX)(AY. VYY) (Az 2)

= Lazy evaluation:

(A X. X X)((AY. YY)z 2)) --B-->

(Ay.y y) (hz 2)

11/28/17

(Ay.y Y)(hz2)

34

i Example 2

s (X XX)((AMY. YY) Mz 2))
= Lazy evaluation:

(A X. X X)(AY- YY) (\z 2)) --p-->
(My.YIM) vz 2) (My.y ¥) (hz 2))

11/28/17 35

i Example 2

s (AX.XX)((MY. VYY) (A 2z 2)

= Lazy evaluation:

(A X x X)N(Ay.yy) Mz 2)) --B-->

(v y-Y) e z.2) (Ly.y y) (2 2))
B> (A z.Z)[(A z. (A y.y v) (M 2z 2))

11/28/17

36

i Example 2

s (AX.XX)((MY. VYY) (Ahz 2)
= Lazy evaluation:

(AX. x xX)(AY. YY) (Az 2))--B-->
(Ay.y y)(Az. z)) (Ay.y ¥) (A z 2))
~-B--> (A z.2) (A 2. 2))(L Y.y ¥) (A2 2))

11/28/17 37

i Example 2

s (AX.XX)((MY. VYY) (Ahz 2)

= Lazy evaluation:

(A X x X (A y.yYy) Az 2)) --B-->

(Ay.y y)(Az.2))(Ay.y V) (AZ 2))
B> (M z.[2)) (A z. 2))(hy.y ¥) (M2 2))

11/28/17 38

i Example 2

s (AX.XX)((MY. VYY) (Ahz 2)
= Lazy evaluation:
(A X x X (A y.yYy) Az 2)) --B-->

(Ay.y y)(Az. z))(Ay.y ¥v) (Az 2))

—-p--> (A z.[z]) L z. 2)((hy. y ¥) (A 2z 2))
B-->|(Az. Z)(Ay.y y) (hz 2))

11/28/17 39

i Example 2

s (AX. XX)(AY. VYY) (Az 2))
= Lazy evaluation:

(A XX X)(AY. YY) Mz 2) --p-->
(Ay.yy)rzz)(Ay.y V) (hz 2)

B> ((Mz.2) 0z 2)((My. Yy ¥V) (2 2)
--p--> (A z.[Z) (Ly.y ¥v) Az 2)) --B-->
Ay.y y)(hz2)

11/28/17 40

ﬁ Example 2

= (A X XXM Y. YY) (MzZ. 2))
= Lazy evaluation:

(A x.x x)((Ay.yy) Az 2)) --f-->
A y.y y) (2. D)) (My.y y) (h2z2))

—B=>{(hz.2) (Az.2)(Ay. Y V) (M2 2))
g3 (A z. (LY. Yy Y) (A2 2)) ~-p-->
\|_(ky. y y) Az 2)]

11/28/17 41

ﬁ Example 2

= (A X XXM Y. YY) (MzZ. 2))
= Lazy evaluation:

(A x.x x)((Ay.yy) Az 2)) --f-->
A y.y y) (2. D)) (My.y y) (h2z2))

—B=>{(hz.2) (Az.2)(Ay. Y V) (M2 2))
g3 (A z. (LY. Yy Y) (A2 2)) ~-p-->
\|_(ky. y Y)(Az.Z2) B~y Mz Z

11/28/17 42

i Example 2

s (AX.XX)((AY. YY) (A z 2))
= Eager evaluation:

(A x. x X)|((ALy.yY) (A 2z 2))=-p-->

(Ax.x X)|[((AMz.2) Mz 2))=p-->
(A x. X X)(\z. 2)|--B-->
(LNz.2) (MLz2.2) —-p--> NZ.Z

11/28/17 43

i Untyped A-Calculus

= Only three kinds of expressions;
« Variables: x, vy, z, w, ...
= Abstraction: A X. e
(Function creation)
= Application: e, e,

11/28/17

44

i How to Represent (Free) Data Structures
(First Pass - Enumeration Types)

= Suppose T is a type with n constructors:
C;,,...,C, (no arguments)
= Represent each term as an abstraction:

mletC— AX .. XX

= Think: you give me what to return in
each case (think match statement) and
I'll return the case for the /jth
constructor

11/28/17 45

i How to Represent Booleans

= bool = True | False
s frue = A X AX. Xy =, AX.AY. X
s False = A X A XX, =, AX.AY.Y
= Notation

= Will write

A Xy ... X, efor Xy ... AX,. €

e e,..e, for(..(e;e)...e,)

11/28/17

46

i Functions over Enumeration Types

= Write a “match” function
= match e with C, -> x4

C,-> X,
— AXy...X €. € Xq..X,

= Think: give me what to do in each case and
give me a case, and I' Il apply that case

11/28/17 47

i Functions over Enumeration Types

s type v = C|...|C,
= match e with C, -> x,

C,-> X,
m matcht = A Xq ... X, €. € Xy..X,

= € = expression (single constructor)
X; is returned if e = C,

11/28/17

48

i match for Booleans

= bool = True | False
m frue = A X X. Xy =, AXY.X
s False = A X X. X, =, AXY.Y

N matCthO/= ?

11/28/17

49

i match for Booleans

= bool = True | False
m frue = A X X. Xy =, AXY.X
s False = A X X. X, =, AXY.Y

= match,,,= A Xy X; €. € X; X,
= AXYDb.bxy

11/28/17

50

i How to Write Functions over Booleans

s if_then_else b x; X, = b x; X,
n if_then_else=Abx; X, .b Xy X%

11/28/17

51

i How to Write Functions over Booleans

= Alternately:
s if b then x; else x, =
match b with True -> x, | False -> x, —
match, , X; X, b =
(AX{ X, b.b XX)X X, b=DbXxy X%,
= if_then_else
= A b X; X5. (Mmatch,, X; X, b)
=Ab Xy X. (WX X, b.bX; X)X X b
= A b X; X. b X X%

11/28/17 52

i Example:

not b

= match b with True -> False | False -> True
— (match,,,) False True b

=(AX; X% b.bXy X)(AXY.Y)(AXY.X)b
=b(AXYy.y)AXY.X)

snot=Ab.b(AXY.yY)(AXY.X)
= Try and, or

11/28/17 53

11/28/17

or

54

i How to Represent (Free) Data Structures
(Second Pass - Union Types)

= Suppose T is a type with n constructors:
type v =Gty ... byl o |Gty o Gy
= Represent each term as an abstraction:

n Gy by =h Xy X X by G

s G=h Gy b Xy Xy X Gy 8

= Think: you need to give each constructor
its arguments fisrt

11/28/17 55

i How to Represent Pairs

= Pair has one constructor (comma) that takes
two arguments

= type (o,p)pair = (,) o p
m(@a,b)->Ax.xab
m(_,_)—->Ahabx.xab

11/28/17 56

i Functions over Union Types

= Write a “match” function
s match ewith C;y, ...y -> 1Y .. Vi

Cn Yi-Ymn =2 1:n Y1 Ymn

s matcht — Af, ... f e.ef..f

= Think: give me a function for each case and

give me a case, and I' Il apply that case to
the appropriate fucntion with the data in that
case

11/28/17 57

i Functions over Pairs

= match,,, _Afp.pf

= fst p = match p with (Xx,y) -> X
= fst — A p. match,, (A X Y. X)
=(AMfp.pf)(AXY.X) =Ap.p(AXY.X)

= SNd = Ap.p(AXY.Y)

11/28/17

58

i How to Represent (Free) Data Structures
(Third Pass - Recursive Types)

= Suppose T is a type with n constructors:
typer =C, by, ... t | ... |Gt ... L,
= Suppose £, : t (ie. is recursive)

= In place of a value t, have a function to compute
the recursive value ry X, ... X,

8 Gty oo Moty = AXp o Xo o X By e (FpXq oo Xo) oo B
s C— A t,1 b Xy X X G (Mg Xq e Xp) e 8

11/28/17 59

i How to Represent Natural Numbers

mnat=Sucnat | 0
aSuc =Anfx f(nfx)
sSucn=Afx.f(nfx)
=0 =AfX. X

= Such representation called
Church Numerals

11/28/17

60

i Some Church Numerals

s SucO0=(Anfx.f(nfx)) (Afx x)->
MX (AT X X)fX)-->
MXF((AX X)X)—->AfX fX

Apply a function to its argument once

11/28/17

61

i Some Church Numerals

s Suc(Suc 0) = (A nfx. f(nfx)) (SucO0)-->
(Anfx.f(nfx)) (Afx.fx)->
AEX (AT X fX) X)) -—->
AMEX F((AX fX) X)) —->AFfX f(fXx)
Apply a function twice

In general n = A fx. f (... (fx)...) with n
applications of f

11/28/17 62

i Primitive Recursive Functions

= Write a “fold” function
= fold f, ... f, = match e
with G,y ... Yy -> f1 Y1 o Vi

Cn Y1 Ymn -> 1‘:n YI Ymn

m foldr — ANf, ... f e ef..f

= Match in non recursive case a degenerate version
of fold

11/28/17 63

i Primitive Recursion over Nat

s fold f z n=
= match nwith 0 -> z
: | Suc m -> f (fold f z m)

afold=Afzn.nfz

= iS_zero n = fold (A r. False) True n
s = (MfX. f"X) (A r. False) True
= = ((Ar. False) ") True

s =if n = 0 then True else False

11/28/17

64

i Adding Church Numerals

an=7Afx.f"x and m=Arfx. fmx

snN+m=Arfx fO+mx
=Afx.fn(fmx)=Afx.nf(mfx)
--T—sxnmfx.nf(mfx)

= Subtraction is harder

11/28/17

65

i Multiplying Church Numerals

an=7Afx.f"x and m=Arfx. fmx

*=Anmfx.n(mf)x

11/28/17

66

i Predecessor

= let pred_aux n =

match n with 0 -> (0,0)

| Suc m

-> (Suc(fst(pred_aux m)), fst(pred_aux m)
= fold (A r. (Suc(fstr), fstr)) (0,0) n

= pred = A n. snd (pred_aux n) n =
A n. snd (fold (A r.(Suc(fst r), fst r)) (0,0) n)

11/28/17 67

i Recursion

= Want a A-term Y such that for all term
R we have

= YR =R (YR)

= Y needs to have replication to
“remember” a copy of R

=Y =AY, (AX Y(X X)) (M X Y(X X))
= Y R=(AX. R(XX)) (AX. R(XX))
= R (A X. R(X X)) (A X. R(X X)))

= Notice: Requires lazy evaluation

11/28/17

68

i Factorial

s letF=Afn.ifn=0thenlelsen*f(n-1)
YF3=F(YF)3

=if3=0thenlelse3 *((YF)(3-1))
=3*(YF)2=3*(F(YF) 2)
=3*(if2=0thenlelse2*(YF)(2-1))
=3*R2*(YF1)=3*2*KYF)1))=..
=3*2*1*(if 0 =0then 1 else 0*(Y F)(0 -1))
=3*2*1*1=6

11/28/17 69

i Y in OCaml|

#letrecyf=f~f(yf);;

valy : (‘fa->"'a) -> 'a = <fun>

let mk_fact =
funfn->ifn=0then1elsen *f(n-1);;

val mk_fact : (int -> int) -> int -> int = <fun>

y mk_fact;;

Stack overflow during evaluation (looping
recursion?).

11/28/17 70

i Eager Eval Y in Ocaml

#letrecyfx="Ff(yf)x;;

valy: (("la->'b)->"'a->'b)->"a->'b =
<fun>

#y mk_fact;;

- 1 int -> int = <fun>

vy mk_fact 5;;

-:int =120

= Use recursion to get recursion

11/28/17

/1

i Some Other Combinators

= For your general exposure

s =AX.X

s K=AX.AY. X

s K« = AX.AY. Y

s S=AX.AY.AZ.XZ2(Yy2)

11/28/17

72

