Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

11/2/19

Support for Polymorphic Types

- Monomorpic Types (τ):
 - Basic Types: int, bool, float, string, unit, ...
 - Type Variables: α, β, γ, δ, ε
 - Compound Types: $\alpha \rightarrow \beta$, int * string, bool list, ...
- Polymorphic Types:
 - Monomorphic types τ
 - Universally quantified monomorphic types
 - $\forall \alpha_1, \ldots, \alpha_n \cdot \tau$
 - Can think of τ as same as ∀. τ

11/2/19 2

Example: $\{\}\ | -2 = 3 : bool$

(=) : All 'a. 'a -> 'a -> bool

Instance: 'a -> int

-----Const {} |- (=) : ------Const

int -> int -> bool {} |- 2:int ------Const

{} |-(=) 2 : int -> bool {} |- 3 : int -----App

 $\{\}\ | -2 = 3 : bool$

11/2/19

Example FreeVars Calculations

- Vars('a -> (int -> 'b) -> 'a) ={'a, 'b}
- FreeVars (All 'b. 'a -> (int -> 'b) -> 'a) =
- {'a,'b} {'b}= {'a}
- FreeVars {x : All 'b. 'a -> (int -> 'b) -> 'a,
- id: All 'c. 'c -> 'c,
- y: All 'c. 'a -> 'b -> 'c} =
- {'a} U {} U {'a, 'b} = {'a, 'b}

11/2/19 4

Support for Polymorphic Types

- Typing Environment Γ supplies polymorphic types (which will often just be monomorphic) for variables
- Free variables of monomorphic type just type variables that occur in it
 - Write FreeVars(τ)
- Free variables of polymorphic type removes variables that are universally quantified
 - FreeVars($\forall \alpha_1, \dots, \alpha_n \cdot \tau$) = FreeVars(τ) { $\alpha_1, \dots, \alpha_n$ }
- FreeVars(Γ) = all FreeVars of types in range of Γ

11/2/19

5

Monomorphic to Polymorphic

- Given:
 - type environment Γ
 - monomorphic type τ
 - $\bullet \tau$ shares type variables with Γ
- Want most polymorphic type for τ that doesn't break sharing type variables with Γ
- Gen(τ , Γ) = $\forall \alpha_1, ..., \alpha_n$. τ where $\{\alpha_1, ..., \alpha_n\}$ = freeVars(τ) freeVars(Γ)

Polymorphic Typing Rules

A *type judgement* has the form

$$\Gamma$$
 |- exp : τ

- Γ uses polymorphic types
- τ still monomorphic
- Most rules stay same (except use more general typing environments)
- Rules that change:
 - Variables
 - Let and Let Rec
 - Allow polymorphic constants
- Worth noting functions again

11/2/19

Two Problems

- Type checking
 - Question: Does exp. e have type τ in env Γ?
 - Answer: Yes / No
 - Method: Type derivation
- Typability
 - Question Does exp. e have some type in env. \(\Gamma\)? If so, what is it?
 - Answer: Type **T** / error Method: Type inference

Type Inference - Outline

- Begin by assigning a type variable as the type of the whole expression
- Decompose the expression into component expressions
- Use typing rules to generate constraints on components and whole
- Recursively find substitution that solves typing judgment of first subcomponent
- Apply substitution to next subcomponent and find substitution solving it; compose with first, etc.
- Apply comp of all substitution to orig. type var. to get answer

11/2/19

11/2/19

Type Inference - Example

What type can we give to

$$(fun x -> fun f -> f (f x))$$

 Start with a type variable and then look at the way the term is constructed

11/2/19 10

Type Inference - Example

First approximate:

$$\{ \} | - (fun x -> fun f -> f (f x)) : \alpha \}$$

Second approximate: use fun rule

$$\{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma$$

 $\{\} \mid - (\text{fun } x -> \text{fun } f -> f (f x)) : \alpha$

• Remember constraint $\alpha = (\beta \rightarrow \gamma)$

11/2/19

11

Third approximate: use fun rule

$$\frac{\{f:\delta\;;\;x:\beta\}\;|-\;f\;(f\;x):\epsilon}{\{x:\beta\}\;|-\;(fun\;f\;->\;f\;(f\;x)):\gamma}\\ \{\;\}\;|-\;(fun\;x\;->\;fun\;f\;->\;f(f\;x)):\alpha$$

• $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$

Type Inference - Example

Fourth approximate: use app rule

```
\frac{\{f:\delta; x:\beta\}|-f:\phi \to \varepsilon \quad \{f:\delta; x:\beta\}|-fx:\phi}{\frac{\{f:\delta; x:\beta\}|-(f(fx)):\varepsilon}{\{x:\beta\}|-(funf->f(fx)):\gamma}}
\{f:\delta; x:\beta\}|-(funf->f(fx)):\alpha
\{f:\delta; x:\beta\}|-(funf->f(fx)):\alpha
```

11/2/19

Type Inference - Example

- Fifth approximate: use var rule, get constraint $\delta = \varphi \rightarrow \varepsilon$, Solve with same
- Apply to next sub-proof

$$\frac{\{f:\delta; x:\beta\}|-f:\phi \to \varepsilon \quad \{f:\delta; x:\beta\}|-fx:\phi}{\{f:\delta; x:\beta\}|-(f(fx)):\varepsilon}$$

$$\frac{\{f:\delta; x:\beta\}|-(f(fx)):\gamma}{\{x:\beta\}|-(f(fx)):\gamma}$$

$$\{f:\delta; x:\beta\}|-(f(fx)):\alpha$$

$$\frac{\{f:\delta; x:\beta\}|-(f(fx)):\alpha}{\{x:\beta\}|-(f(fx)):\alpha}$$

$$\frac{\{f:\delta; x:\beta\}|-(f(fx)):\alpha}{\{x:\beta\}|-(f(fx)):\alpha}$$

$$\frac{\{f:\delta; x:\beta\}|-(f(fx)):\alpha}{\{x:\beta\}|-(f(fx)):\alpha}$$

14

Type Inference - Example

• Current subst: $\{\delta = \varphi \rightarrow \epsilon\}$

13

Type Inference - Example

■ Current subst: $\{\delta = \varphi \rightarrow \epsilon\}$ Use App Rule

Type Inference - Example

• Current subst: $\{\delta = \varphi \rightarrow \epsilon\}$

4

Type Inference - Example

■ Current subst: $\{\zeta = \varepsilon, \varphi = \varepsilon\}$ o $\{\delta = \varphi \rightarrow \varepsilon\}$

■ Var rule: Solve
$$\xi \rightarrow \varphi = \varphi \rightarrow \epsilon$$
 Unification
$$\begin{cases}
f: \varphi \rightarrow \epsilon; x: \beta\} | -f: \xi \rightarrow \varphi \quad \{f: \varphi \rightarrow \epsilon; x: \beta\} | -x: \xi \\
... \quad \{f: \varphi \rightarrow \epsilon; x: \beta\} | -f x: \varphi
\end{cases}$$

$$\begin{cases}
f: \delta; x: \beta\} | -(f(fx)): \epsilon
\end{cases}$$

$$\begin{cases}
x: \beta\} | -(fun f -> f(f x)): \gamma
\end{cases}$$

$$\begin{cases}
f: \varphi \rightarrow \varphi; x: \varphi
\end{cases}$$

$$\begin{cases}
f: \varphi \rightarrow \epsilon; \varphi
\end{cases}$$

Type Inference - Example

- Current subst: $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Apply to next sub-proof

```
\{f: \varepsilon \rightarrow \varepsilon; x:\beta\} | - x:\varepsilon
                    \{f:\varphi \to \varepsilon; x:\beta\}|-fx:\varphi
             \{f: \delta ; x: \beta\} \mid -(f(fx)) : \varepsilon
          \{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma
      \{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}
```

Type Inference - Example

- Current subst: $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Var rule: ε≡β

...
$$\frac{\{f:\epsilon\rightarrow\epsilon; x:\beta\}|-x:\epsilon}{\dots \{f:\phi\rightarrow\epsilon; x:\beta\}|-fx:\phi}$$

$$\frac{\{f:\delta; x:\beta\}|-\{f(fx)\}:\epsilon}{\{x:\beta\}|-\{f(fx)\}:\gamma}$$

$$\frac{\{x:\beta\}|-\{f(f(f(x))\}:\gamma\}|}{\{\}|-\{f(f(f(x))\}:\gamma\}|}$$

$$\frac{\{f:\epsilon\rightarrow\epsilon; x:\beta\}|-\{f(f(x))\}:\phi}{\{f(f(x))\}:\alpha}$$

Type Inference - Example

- Current subst: $\{\varepsilon = \beta\}$ o $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Solves subproof; return one layer

```
\{f: \varepsilon \rightarrow \varepsilon; x:\beta\} | - x:\varepsilon
                           \{f:\varphi \to \varepsilon; x:\beta\}|-f x:\varphi
                 \{f: \delta ; x: \beta\} \mid -(f(fx)) : \varepsilon
              \{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma
        \{ \} \mid - (\text{fun } x -> \text{fun } f -> f (f x)) : \alpha \}
• \alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)
                                                                                            21
```


Type Inference - Example

- Current subst: $\{\varepsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$
- Solves this subproof; return one layer

 $\{f:\varphi \to \varepsilon; x:\beta\}|-f x:\varphi$ $\{f: \delta ; x: \beta\} \mid -(f(fx)) : \varepsilon$ $\{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma$ $\{ \} \mid - (\text{fun } x -> \text{fun } f -> f (f x)) : \alpha \}$ • $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$ 22

Type Inference - Example

- Current subst: $\{\varepsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$
- Need to satisfy constraint $\gamma = (\delta \rightarrow \epsilon)$, given subst, becomes: $\gamma = ((\beta \rightarrow \beta) \rightarrow \beta)$

$$\frac{\{\underline{f}: \delta ; x : \beta\} \mid -(f(fx)) : \epsilon}{\{x : \beta\} \mid -(fun f -> f(fx)) : \gamma}$$

$$\{ \} \mid -(fun x -> fun f -> f(fx)) : \alpha$$

$$\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$$
11/2/19

23

Type Inference - Example

Current subst:

$$\{ \gamma = ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta \}$$

Solves subproof; return one layer

```
\{f: \delta ; x: \beta\} \mid -(f(fx)) : \epsilon
            \{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma
       \{ \} \mid - (\text{fun } x -> \text{fun } f -> f (f x)) : \alpha \}
• \alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)
                                                                                   24
```


Type Inference - Example

Current subst:

$$\{ \gamma = ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta \}$$

■ Need to satisfy constraint $\alpha = (\beta \rightarrow \gamma)$ given subst: $\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta))$

 $\frac{\{x : \beta\} \mid - (\text{fun } f \rightarrow f (f x)) : \gamma}{\{\} \mid - (\text{fun } x \rightarrow \text{fun } f \rightarrow f (f x)) : \alpha}$

 $\bullet \quad \alpha = (\beta \rightarrow \gamma);$

11/2/19

Type Inference - Example

Current subst:

$$\{\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta)), \\ \gamma = ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$$

Solves subproof; return on layer

$$\{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma \}$$

 $\{\} \mid - (\text{fun } x -> \text{fun } f -> f (f x)) : \alpha \}$

11/2/19 26

Type Inference - Example

Current subst:

$$\{\alpha = (\beta \to ((\beta \to \beta) \to \beta)), \\ \gamma = ((\beta \to \beta) \to \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \to \beta\}$$

■ Done: $\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta))$

$$\{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}$$

11/2/19

27

25

Type Inference Algorithm

Let infer $(\Gamma, e, \tau) = \sigma$

- Γ is a typing environment (giving polymorphic types to expression variables)
- e is an expression
- τ is a type (with type variables),
- σ is a substitution of types for type variables
- Idea: σ is the constraints on type variables necessary for $\Gamma \mid -e : \tau$
- Should have $\sigma(\Gamma)$ |- e : $\sigma(\tau)$ valid

11/2/19 28

Type Inference Algorithm

infer $(\Gamma, exp, \tau) =$

- Case exp of
 - Var v --> return Unify $\{\tau = \text{freshInstance}(\Gamma(v))\}$
 - Replace all quantified type vars by fresh ones
 - Const c --> return Unify{ τ = freshInstance ϕ } where Γ |- c : ϕ by the constant rules
 - fun *x* -> *e* -->
 - Let α , β be fresh variables
 - Let σ = infer ($\{x: \alpha\} + \Gamma, e, \beta$)
 - Return Unify($\{\sigma(\tau) \equiv \sigma(\alpha \rightarrow \beta)\}$) o σ

11/2/19

29

11/2/19

Type Inference Algorithm (cont)

- Case *exp* of
 - App $(e_1 e_2)$ -->
 - Let α be a fresh variable
 - Let σ_1 = infer(Γ , e_1 , $\alpha \rightarrow \tau$)
 - Let σ_2 = infer($\sigma(\Gamma)$, e_2 , $\sigma(\alpha)$)

30

• Return $\sigma_2 \circ \sigma_1$

Type Inference Algorithm (cont)

- Case *exp* of
 - If e_1 then e_2 else e_3 -->
 - Let σ_1 = infer(Γ , e_1 , bool)
 - Let σ_2 = infer($\sigma\Gamma$, e_2 , $\sigma_1(\tau)$)
 - Let $\sigma_3 = \inf(\sigma_2 \circ \sigma_1(\Gamma), e_2, \sigma_2 \circ \sigma(\tau))$
 - Return $\sigma_3 \circ \sigma_2 \circ \sigma_1$

11/2/19

31

- Case exp of
 - let $x = e_1$ in e_2 -->
 - Let α be a fresh variable
 - Let σ_1 = infer(Γ , e_1 , α)
 - Let σ_2 =

infer({x: $\overline{GEN}(\sigma_1(\Gamma), \sigma_1(\alpha))$ } + $\sigma_1(\Gamma)$, e_2 , $\sigma_1(\tau)$)

32

36

■Return σ₂ o σ₁

11/2/19

Type Inference Algorithm (cont)

- Case *exp* of
 - let rec $x = e_1$ in e_2 -->
 - Let α be a fresh variable
 - Let σ_1 = infer($\{x: \alpha\} + \Gamma, e_1, \alpha$)
 - Let $\sigma_2 = \inf\{(x: GEN(\sigma_1(\Gamma), \sigma_1(\alpha))\}$ + $\sigma_1(\Gamma)\}, e_2, \sigma_1(\tau))$
 - Return $\sigma_2 \circ \sigma_1$

11/2/19

33

35

Type Inference Algorithm (cont)

- To infer a type, introduce type_of
- Let α be a fresh variable
- type_of (Γ, e) =
 - Let σ = infer (Γ, e, α)
 - Return $\sigma(\alpha)$
- Need an algorithm for Unif

11/2/19 34

Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

11/2/19

-

Simple Implementation Background

let rec subst var_name residue term =
 match term with Variable name ->
 if var_name = name then residue else term
 | Const (c, tys) ->

Const (c, List.map (subst var_name residue) tys);;

Unification Problem

Given a set of pairs of terms ("equations")

$$\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$$

(the *unification problem*) does there exist a substitution σ (the *unification solution*) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

11/2/19

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCaml
 - Can use a simplified version of algorithm
- Logic Programming Prolog
- Simple parsing

11/2/19 38

Unification Algorithm

- Let $S = \{(s_1 = t_1), (s_2 = t_2), ..., (s_n = t_n)\}$ be a unification problem.
- Case S = { }: Unif(S) = Identity function
 (i.e., no substitution)
- Case $S = \{(s, t)\} \cup S'$: Four main steps

11/2/19

Unification Algorithm

- Delete: if s = t (they are the same term) then Unif(S) = Unif(S')
- Decompose: if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ (same f, same m!), then Unif(S) = Unif($\{(q_1, r_1), ..., (q_m, r_m)\} \cup S'$)
- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x = s)} ∪ S')

11/2/19 40

Unification Algorithm

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - Let $\varphi = \{x \rightarrow t\}$
 - Unif(S) = Unif(φ (S')) o {x \rightarrow t}
 - Let $\psi = \text{Unif}(\varphi(S'))$
 - Unif(S) = $\{x \rightarrow \psi(t)\}\ o \psi$
 - Note: $\{x \rightarrow a\}$ o $\{y \rightarrow b\}$ = $\{y \rightarrow (\{x \rightarrow a\}(b))\}$ o $\{x \rightarrow a\}$ if y not in

11/2/19 **a**

39

Tricks for Efficient Unification

- Don't return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won't discuss these

11/2/19 42

- x,y,z variables, f,g constructors
- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

11/2/19

43

Example

- x,y,z variables, f,g constructors
- $S = \{(f(x) = f(g(f(z),y))), (g(y,y) = x)\}$ is nonempty
- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

11/2/19

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = x)
- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

11/2/19

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y)) = x
- Orient: (x = g(y,y))
- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} =$ Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$ by Orient

11/2/19 46

Example

- x,y,z variables, f,g constructors
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

11/2/19

45

47

Example

- x,y,z variables, f,g constructors
- $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}\$ is nonempty
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

11/2/19

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

11/2/19

Example

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in g(y,y)
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

11/2/19 50

Example

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} =$ Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\}$

11/2/19 51

Example

- x,y,z variables, f,g constructors
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} = ?$

11/2/19 52

Example

- x,y,z variables, f,g constructors
- $\{(f(g(y,y)) = f(g(f(z),y)))\}\$ is non-empty
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} = ?$

11/2/19

-

53

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} = ?$

11/2/19 54

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose:(f(g(y,y)) = f(g(f(z),y)))becomes $\{(g(y,y) = g(f(z),y))\}$
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} =$ Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\}$

11/2/19 55

Example

- x,y,z variables, f,g constructors
- $\{(g(y,y) = g(f(z),y))\}\$ is non-empty
- Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\} = ?$

11/2/19 56

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = g(f(z),y))
- Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\} = ?$

11/2/19

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose: (g(y,y)) = g(f(z),y)) becomes {(y = f(z)); (y = y)}
- Unify $\{(g(y,y) = g(f(z),y))\}\ o \{x \rightarrow g(y,y)\} =$ Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\}$

11/2/19 58

Example

- x,y,z variables, f,g constructors
- Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\} = ?$

59

57

Example

- x,y,z variables, f,g constructors
- {(y = f(z)); (y = y)} o {x→ g(y,y) is nonempty
- Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\} = ?$

11/2/19

11/2/19

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))
- Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\} = ?$

11/2/19

19 61

Example

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))
- Eliminate y with $\{y \rightarrow f(z)\}$
- Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} =
 Unify {(f(z) = f(z))}
 o {y → f(z)} o {x→ g(y,y)}=
 Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))}

11/2/19 62

Example

- x,y,z variables, f,g constructors
- Unify $\{(f(z) = f(z))\}$ o $\{y \to f(z); x \to g(f(z), f(z))\} = ?$

11/2/19

Example

- x,y,z variables, f,g constructors
- $\{(f(z) = f(z))\}$ is non-empty
- Unify $\{(f(z) = f(z))\}$ o $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?$

11/2/19 64

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))
- Unify $\{(f(z) = f(z))\}$ o $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?$

11/2/19

4

63

65

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))
- Delete
- Unify $\{(f(z) = f(z))\}$ o $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} =$ Unify $\{\}$ o $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

11/2/19

- x,y,z variables, f,g constructors
- Unify $\{\}$ o $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?$

11/2/19

- x,y,z variables, f,g constructors
- {} is empty
- Unify {} = identity function
- Unify {} o {y \rightarrow f(z); x \rightarrow g(f(z), f(z))} = {y \rightarrow f(z); x \rightarrow g(f(z), f(z))}

11/2/19 68

Example

■ Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

$$f(x) = f(g(f(z), y))$$

$$\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

$$g(y, y) = x$$

$$\rightarrow g(f(z), f(z)) = g(f(z), f(z))$$

11/2/19 69

Example of Failure: Decompose

- Unify $\{(f(x,g(y)) = f(h(y),x))\}$
- Decompose: (f(x,g(y)) = f(h(y),x))
- \blacksquare = Unify {(x = h(y)), (g(y) = x)}
- Orient: (g(y) = x)
- \blacksquare = Unify {(x = h(y)), (x = g(y))}
- Eliminate: (x = h(y))
- Unify $\{(h(y) = g(y))\}\ o \{x \to h(y)\}$
- No rule to apply! Decompose fails!

11/2/19 70

Example of Failure: Occurs Check

- Unify $\{(f(x,g(x)) = f(h(x),x))\}$
- Decompose: (f(x,g(x)) = f(h(x),x))
- \blacksquare = Unify {(x = h(x)), (g(x) = x)}
- Orient: (g(y) = x)
- \blacksquare = Unify {(x = h(x)), (x = g(x))}
- No rules apply.

11/2/19

Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics

11/2/19 73

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

11/2/19 74

Syntax of English Language

Pattern 1

Subject	Verb
David	sings
The dog	barked
Susan	yawned

Pattern 2

Subject	Verb	Direct Object
David	sings	ballads
The professor	wants	to retire
The jury	found	the defendant guilty

11/2/19 75

Elements of Syntax

- Character set previously always ASCII, now often 64 character sets
- Keywords usually reserved
- Special constants cannot be assigned to
- Identifiers can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

11/2/19

76

78

Elements of Syntax

Expressions

if ... then begin ...; ... end else begin ...; ... end

Type expressions

typexpr₁ -> typexpr₂

Declarations (in functional languages)

let pattern₁ = expr₁ in expr

Statements (in imperative languages)

a = b + c

Subprograms

let pattern₁ = let rec inner = ... in expr

11/2/19

77

Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
 - Specification Technique: Regular Expressions
 - Parsing: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars

11/2/19 79

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory

11/2/19 80

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

11/2/19 81