Programming Languages and
Compilers (CS 421)

»

~
Elsa L Gunter
2112 SC, UIluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/2/19 1

i Support for Polymorphic Types

= Monomorpic Types (t):
= Basic Types: int, bool, float, string, unit, ...
= Type Variables: o, B, v, 9, &

= Compound Types: o — B, int * string, bool list, ...

= Polymorphic Types:
= Monomorphic types t
= Universally quantified monomorphic types
= Vo, ..,a,.T
= Can think of t as same as V. t

11/2/19 2

$ Example: {} |- 2 = 3 : bool

(=) : All'a. ‘a -> ‘a -> bool

Instance: ‘a -> int

Const
G- Const
int -> int -> bool {} |- 2:int
App - Const
{3} |-(=) 2 : int -> bool {}|-3:int
App
{} |-2=3: bool

11/2/19 3

i Example FreeVars Calculations

= Vars(‘a -> (int -> 'b) ->‘a) ={a, 'b}

= FreeVars (All'b. ‘a -> (int ->'b) ->'a) =
= {a,'b}-{b}={a}

= FreeVars {x : All'b. ‘a -> (int ->'b) -> '3,
= id: All'c.'c->c,
=y:All'c.'a->b->'c} =

= {a} U {}U{q, b} = {3, 'b}

11/2/19 4

i Support for Polymorphic Types

= Typing Environment I" supplies polymorphic types
(which will often just be monomorphic) for
variables

= Free variables of monomorphic type just type
variables that occur in it
= Write FreeVars(t)

= Free variables of polymorphic type removes
variables that are universally quantified
= FreeVars(Vay, ..., a, . t) = FreeVars(t) — {0y, ... , o +

= FreeVars(I') = all FreeVars of types in range of T

11/2/19 5

i Monomorphic to Polymorphic

= Given:
= type environment T’
= monomorphic type t
= T shares type variables with T

= Want most polymorphic type for t that
doesn’ t break sharing type variables with T

= Gen(t, ') =Vay, ..., o, . T Where
{oy, ... , a,} = freeVars(t) — freeVars(I')

11/2/19 6

i Polymorphic Typing Rules

= A type judgement has the form
F|-exp:t

= [uses polymorphic types
= 7 still monomorphic

= Most rules stay same (except use more general
typing environments)

= Rules that change:
= Variables
» Let and Let Rec
= Allow polymorphic constants

= Worth noting functions again

11/2/19 7

i Two Problems

= Type checking

= Question: Does exp. e have type T in env I'?
= Answer: Yes / No
= Method: Type derivation
= Typability
= Question Does exp. e have some type in env. I'?
If so, what is it?
= Answer: Type T / error
= Method: Type inference

11/2/19 8

$ Type Inference - Outline

= Begin by assigning a type variable as the type of
the whole expression

= Decompose the expression into component
expressions

= Use typing rules to generate constraints on
components and whole

= Recursively find substitution that solves typing
judgment of first subcomponent

= Apply substitution to next subcomponent and find
substitution solving it; compose with first, etc.

= Apply comp of all substitution to orig. type var. to
get answer

11/2/19 9

i Type Inference - Example

= What type can we give to
(fun x -> fun f -> f (f x))

= Start with a type variable and then look at
the way the term is constructed

11/2/19 10

i Type Inference - Example

= First approximate:
{}- (funx->funf->f(fx)): «a

= Second approximate: use fun rule
{X:B}|-(funf->f(fx)):y

{}|-(funx->funf->f(fx)): a
= Remember constraint o = (f — v)

11/2/19 11

i Type Inference - Example

= Third approximate: use fun rule
{f:0;x:p}[-f(Fx):e
X:B}|-(funf->f(fx)) :y
{}|-(funx->funf->f(fx)) :
ma=(P—=7);v=(0—¢)

11/2/19 12

iType Inference - Example

= Fourth approximate: use app rule
{f:0; x:B}-f: @ —=¢ {f:0; x:f}-fx: @
{F:0;x:B}y|-(F(fx)):¢
{X:B}|-(funf->Ff(fx)):y
{}|-funx->funf->f(fx)):a
ma=(B—=v);v=0—¢)

11/2/19 13

iType Inference - Example

= Fifth approximate: use var rule, get
constraint 6=¢ — ¢, Solve with same

= Apply to next sub-proof
{f:0; x:p}-f: @ —=¢ {f:0; x:iP}-fx:q@
{f:0;x:BY[-(f(fx)):e
X:B}[-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
= a=(B—=>7);v=(—c¢)

11/2/19 14

i Type Inference - Example

= Current subst: {6=¢ — &}

{fip = ¢; Xif}-fX: @
{f:8; x:BY|-(fF(fx):¢
{xX:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): a
ma=(B—=y);v=00—¢)

11/2/19 15

i Type Inference - Example

= Current subst: {6=¢ — ¢} Use App Rule

{fro—e; X:p}H- F:iT—0 {fig—e; x:B}- x:T
{fip = ¢; XiB}-fX: 0
{f:0; x:BY|-(F(fX)): ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): a
ma=(B—=7);v=(0—>¢)

11/2/19 16

* Type Inference - Example

= Current subst: {6=¢ — ¢}
= Var rule: Solve C—¢ =¢p—¢ Unification

{fio—¢; X:B}- fiT—q {fig—e; X:B}- x:T
{fip = ¢; Xif}-fX: @
{f:0; x:BY]-(F(fX)): ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): «
ma=B—=>v);v=0—¢)

11/2/19 17

* Type Inference - Example

= Current subst: {C=¢, p=¢} o {6=¢p — ¢}
= Var rule: Solve T—¢ =¢p—¢ Unification

{fig—¢; X:B}- FiT—g {fig—e; x:B}-x:T
{fip = g; Xif}-fX: 0
{:0; x:BY|-(F(fX): ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
ma=B—=>v);yv=0—¢)

11/2/19 18

iType Inference - Example

= Current subst: {C=¢, gp=¢, d=c—¢}
= Apply to next sub-proof
{fie—¢; X:p}|- Xie
{fip = ¢; XiB}-fX: @
{:0;x:B]-(F(fx)) ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
ma=(B—=7)v=(0—¢)

11/2/19 19

iType Inference - Example

= Current subst: {C=¢, gp=¢, d=¢—¢}
= Var rule: e=p

{fie—¢; X:p}|- xie
{fip = ¢; XiB}-fX: 0
{:0; x:Br|-(F(fx)) : ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
=a=(B—=v);1=0—¢)

11/2/19 20

i Type Inference - Example

= Current subst: {e=pf}o{C=¢, @=¢, d=c—¢}
= Solves subproof; return one layer
{f:e—¢; X:B}|- X:ie
{fip = ¢; Xif}-fX: @

{0 x:BY[-(f(fFX)) : ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): «

ma=B—=7)v=(0—¢)

11/2/19 21

i Type Inference - Example

= Current subst: {e=p, C=p, ¢=p, 0=p—PL}
= Solves this subproof; return one layer

{fip = ¢; XiB}-fX: 0
{f:d8;x:BY|-(F(fx)) : ¢
{X:B}|-(funf->f(fx)):y

{}]-(funx->funf->f(fx)): a
ma=B—=v);v=0—>¢)

11/2/19 22

* Type Inference - Example

= Current subst: {e=B, T=B, ¢=p, d=p—p}
= Need to satisfy constraint y = (6 — ¢),
given subst, becomes: y = ((B—p) — B)

{:0;x:B}[-(F(fx)) :¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): a
sa=(B=y)v=(0=e)

11/2/19 23

* Type Inference - Example

= Current subst:

{v = ((B—=B) — B),e=p, T=B, 9=P, d=p—P}

= Solves subproof; return one layer

{:0; x:BY|-(F(fX): ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
ma=B—=>v);yv=0—¢)

11/2/19 24

iType Inference - Example

= Current subst:

{v = (B—B) — B),e=B, =B, @=P, 6=p—P}
= Need to satisfy constraint o = (B — v)
given subst: o = (B — ((B—p) = B))

{X:p}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): a
= a=(p—>7)

11/2/19

25

iType Inference - Example

= Current subst:
{o=(B — ((B—B) —= B)),
y = ((B—B) — B).e=P, C=B, @=B, 6=p—P}

= Solves subproof; return on layer

{X:B}|-(funf->f(fx)):y
{}]-(funx->funf->f(fx)): a

11/2/19 26

i Type Inference - Example

= Current subst:

{a= (B = ((B—=B) = B)),

v = ((B—=B) — B)ie=B, =B, =B, 6=p—Pp}
= Done: a = (B — ((B—=B) —= B))

{}|-(funx->funf->f(fx)): a

11/2/19 27

i Type Inference Algorithm

Let infer (I', e, t) = o

= [is a typing environment (giving polymorphic
types to expression variables)

= €IS an expression

= T is a type (with type variables),

= o is a substitution of types for type variables

Idea: o is the constraints on type variables
necessary for T |-e:x

= Should have o(I') |- e : o(z) valid

11/2/19 28

i Type Inference Algorithm

infer (T, exp, t) =
= Case exp of
= Var v --> return Unify{t = freshInstance(I'(v))}
= Replace all quantified type vars by fresh ones

= Const ¢ --> return Unify{t = freshinstance ¢ }
where T |- ¢: ¢ by the constant rules

= fun x-> e -->
= Let o, B be fresh variables
sleto =infer{x: a} + T, € B)
= Return Unify({o(t) = o(aa = B)}) o o

11/2/19 29

* Type Inference Algorithm (cont)

= Case exp of
=App (e, &) -->
«Let a be a fresh variable
«Let o, = infer(T, ¢, a — 1)
«Let o, = infer(o(I), &, o(a))
=Return o,0 o,

11/2/19 30

iType Inference Algorithm (cont)

= Case exp of
= If g then g, else e; -->
sLet o, = infer(T", e, bool)
sLet o, = infer(ol, &, 0,(7))
= Let o5 = infer(o, o 0,(T),&,,0, 0 0(T))
=Return 030 0,0 0y

11/2/19 31

iType Inference Algorithm (cont)

= Case exp of
alet x=¢/ine >
=« Let o be a fresh variable
«Let o, = infer(T, e, o)
«Let o,
infer({x:GEN(o,(T), o,(a))} + o4(T),
eZI 01('5))
=Return o, 0 oy

11/2/19 32

i Type Inference Algorithm (cont)

= Case exp of
sletrecx=¢ ine, -->
=« Let a be a fresh variable
alet o, = infer({x: a} + T, €, o)
aLet o, = infer({x:GEN(o,(T"),0,(a))}
+0,(I}, &, 04(7))
=Return o, 0 oy

11/2/19 33

i Type Inference Algorithm (cont)

= To infer a type, introduce type_of
= Let o be a fresh variable
= type_of (T, e) =

s Let o = infer (T, €, a)

= Return o (o)

= Need an algorithm for Unif

11/2/19 34

i Background for Unification

= Terms made from constructors and variables (for
the simple first order case)

= Constructors may be applied to arguments (other
terms) to make new terms

= Variables and constructors with no arguments are
base cases

= Constructors applied to different number of
arguments (arity) considered different

= Substitution of terms for variables

11/2/19 35

i Simple Implementation Background

type term = Variable of string
| Const of (string * term list)
let x = Variable “a”;; let tm = Const (“2”,[1);;

let rec subst var_name residue term =
match term with Variable name ->
if var_name = name then residue else term
| Const (c, tys) ->
Const (c, List.map (subst var_name residue)
tys);;

11/2/19 36

i Unification Problem

Given a set of pairs of terms (“equations”)
{(S]_I t])l (SZI tZ)l e (Snl tn)}
(the unification problem) does there exist
a substitution o (the wunification solution)
of terms for variables such that
o(s;) = o(t),
foralli=1, .. n?

11/2/19 37

i Uses for Unification

= Type Inference and type checking
= Pattern matching as in OCaml
= Can use a simplified version of algorithm
= Logic Programming - Prolog
= Simple parsing

11/2/19 38

$ Unification Algorithm

= Let S = {(s;= 1), (5= 1), ..., (s,= L)} be
a unification problem.

= Case S = { }: Unif(S) = Identity function
(i.e., no substitution)

= Case S = {(s, t)} U S’ : Four main steps

11/2/19 39

i Unification Algorithm

= Delete: if s = t (they are the same term)
then Unif(S) = Unif(S")

= Decompose: if s = f(q,, ..., q,,,) and
t =f(ry, ..., r,) (same f, same m!), then
Unlf(S) = Unlf({(qlr r1)/ 4 (qmr rm)} U S,)

= Orient: if t = X is a variable, and s is not a
variable, Unif(S) = Unif {(x =s)} US")

11/2/19 40

i Unification Algorithm

= Eliminate: if s = x is a variable, and
x does not occur in t (the occurs
check), then
sleto={x—=1t}
= Unif(S) = Unif((S’)) 0 {x — t}
= Let ¢y = Unif(¢(S))
= Unif(S) = {x — y(t)} 0y
«Note: {x = a}o{y - b} =
{y = {x—=a}b))}o{x —a}ifynotin
d

11/2/19 41

i Tricks for Efficient Unification

= Don’ t return substitution, rather do it
incrementally
= Make substitution be constant time

= Requires implementation of terms to use
mutable structures (or possibly lazy
structures)

= We won’ t discuss these

11/2/19 42

i Example

= X,Y,z variables, f,g constructors

= Unify {(f(x) = f(9(f(2),y))), (9(y,¥) = x)} =?

11/2/19 43

i Example

= X,Yy,z variables, f,g constructors

= S = {(f(x) = f(9(f(2),y)), (9(y,y) = x)} is

nonempty

= Unify {(f(x) = f(g(f(2),y))), (a(y,y) =x)} =7

11/2/19 44

i Example

= X,Y,Z variables, f,g constructors
= Pick a pair: (g(y,y) = x)

= Unify {(f(x) = f(9(f(2),y))), (9(y,¥) = x)} =?

11/2/19 45

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (g(y,y)) = X)
= Orient: (x = g(y,y))

= Unify {(f(x) = f(9(f(2),y))), (9(y,y) = X)} =

Unify {(f(x) = f(g(f(2),y))), (x = a(y,y))}
by Orient

11/2/19 46

i Example

= X,Y,z variables, f,g constructors

= Unify {(f(x) = f(9(f(2),y))), (x = 9(y,¥))} = ?

11/2/19 47

* Example

= X,Y,zZ variables, f,g constructors

= {(f(x) = f(9(f(2),))), (x = g(y,¥))} is non-
empty

= Unify {(f(x) = f(9(f(2),y))), (x = a(y,y))} = ?

11/2/19 48

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (x = g(y,y))

= Unify {(f(x) = f(9(f(2),y))), (x = g(y,¥))} =7

11/2/19 49

i Example

= X,Y,z variables, f,g constructors

= Pick a pair: (x = g(y,y))

= Eliminate x with substitution {x— g(y,y)}
= Check: x not in g(y,y)

= Unify {(f(x) = f(g(f(2),y))), (x = 9(y.,¥))} =7?

11/2/19 50

i Example

= X,Y,Z variables, f,g constructors
= Pick a pair: (x = g(y,y))
= Eliminate x with substitution {x— g(y,y)}

= Unify {(f(x) = f(g(f(2),y))), (x = g(y,y))} =
Unify {(f(a(y,y)) = f(a(f(2),y)))}
o {x— g(y,y)}

11/2/19 51

i Example

= X,Y,z variables, f,g constructors

= Unify {(f(ga(y,y)) = f(9(f(z),y)))}
o{x—=g(yy)}="7

11/2/19 52

i Example

= X,Y,z variables, f,g constructors
= {(f(9(y,y)) = f(9(f(2),y)))} is non-empty

= Unify {(f(a(y,y)) = f(9(f(2),y)))}
o{x—=g(yy)}="7

11/2/19 53

* Example

= X,Y,zZ variables, f,g constructors
= Pick a pair: (f(g(y,y)) = f(9(f(2),y)))

= Unify {(f(a(y,y)) = f(9(f(2),y)))}
o{x—=g(yy)}="7

11/2/19 54

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(g(y,y)) = f(9(f(2),y)))

= Decompose:(f(g(y,y)) = f(9(f(2),y)))
becomes {(g(y,y) = 9(f(2),y))}

= Unify {(f(a(y,y)) = f(9(f(2),y)))}
o {x—=g(y,y)} =
Unify {(g(y,y) = 9(f(2),y))} o {x— a(y,y)}

11/2/19 55

i Example

= X,Yy,z variables, f,g constructors
= {(9(y,y) = 9(f(2),y))} is non-empty

= Unify {(g(y,y) = 9(f(2),y))}
o{x—=g(yy)}="7

11/2/19 56

i Example

= X,Y,Z variables, f,g constructors
= Pick a pair: (g(y,y) = 9(f(2),y))

= Unify {(g(y,y) = 9(f(2),y))}
o{x—=g(yy)}="7

11/2/19 57

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(g(y,y)) = f(9(f(2),y)))

= Decompose: (g(y,y)) = g(f(z),y)) becomes
{ly =1(2); (y = y)}

= Unify {(g(y,y) = 9(f(2),y))} o {x— g(y,y)} =
Unify {(y = f(2)); (y = y)} o {x— g(y,y)}

11/2/19 58

i Example

= X,Y,z variables, f,g constructors

= Unify {(y = f(2)); (y =y)} o {x—=ga(y,y)} =7

11/2/19 59

* Example

= X,Y,zZ variables, f,g constructors

= {(y =(2)); (y =y)} o {x— g(y,y) is non-
empty

= Unify {(y = f(2)); (y = y)} o {x—=g(y,y)} =?

11/2/19 60

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (y = f(2))

= Unify {(y = f(2)); (y =y)} o {x—=g(y,y)} =7

11/2/19

61

i Example

= X,Yy,z variables, f,g constructors
= Pick a pair: (y = f(2))
» Eliminate y with {y — f(2)}
= Unify {(y = f(2)); (y = y)} o {x—>g(y,¥)} =
Unify {(f(z) = f(2))}
o{y = f(2)} o {x—g(y,y)}=
Unify {(f(z) = f(2))}
o{y — f(2); x—= 9(f(2), f(2))}

11/2/19 62

i Example

= X,Y,Z variables, f,g constructors

= Unify {(f(z) = f(2))}
o{y = f(2); x= 9(f(2), f(2))} = ?

11/2/19

63

i Example

= X,Y,z variables, f,g constructors

s {(f(2) = f(2))} is non-empty

= Unify {(f(z) = f(2))}
o{y = f(2); x=9(f(2), f(2))} = ?

11/2/19 64

i Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(z) = f(2))

= Unify {(f(z) = f(2))}
o{y = f(2); x=>9(f(2), f(2))} = ?

11/2/19

65

* Example

= X,Y,zZ variables, f,g constructors
= Pick a pair: (f(z) = f(2))
= Delete
= Unify {(f(z) = f(2))}
o{y — f(2); x—=9(f(2), f(2))} =
Unify {} o {y — f(2); x— 9(f(2), f(2))}

11/2/19 66

i Example

= X,Y,z variables, f,g constructors

= Unify {} o {y — f(2); x—> 9(f(2), f(2))} = ?

11/2/19 67

i Example

= X,Yy,z variables, f,g constructors

= {} is empty

= Unify {} = identity function

= Unify {} o {y = f(2); x—= 9(f(2), f(2))} =
{y = f(2); x= 9(f(2), f(2))}

11/2/19 68

i Example

= Unify {(f(x) = f(g(f(2),y))), (9(y,y) = X)} =

{y = f(2); }
fi() =f(g(f(z), vy))
— f() = f(g(f(2), f(2)))
gly , vy)=
— 9(f(2),f(2)) =

11/2/19 69

i Example of Failure: Decompose

= Unify{(f(x,9(y)) = f(h(y),x))}

= Decompose: (f(x,g(y)) = f(h(y),x))
= = Unify {(x = h(y)), (9(y) = x)}

= Orient: (g(y) = x)

= = Unify {(x = h(y)), (x = g(y))}

= Eliminate: (x = h(y))

= Unify {(h(y) = 9(y))} o {x = h(y)}
= No rule to apply! Decompose fails!

11/2/19 70

i Example of Failure: Occurs Check

= Unify{(f(x,9(x)) = f(h(x),x))}

= Decompose: (f(x,g(x)) = f(h(x),x))
= = Unify {(x = h(x)), (9(x) = x)}

= Orient: (g(y) = x)

= = Unify {(x = h(x)), (x = g(x))}

= No rules apply.

11/2/19 71

* Major Phases of a Compiler

Source Program Optimized IR
Instruction Relocatable
Tokens Selection O%‘je
Unoptimized Machine- Linker

Semantic Code
Analysis
Symbol Table
Intermediate
Representation

Optimize
Optimized Machine-Specific
Assembly Language

Assembly Language

Assembler

‘ Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

fbstract Syntax | Specific Assembly Language | Machine

i Meta-discourse

= Language Syntax and Semantics
= Syntax
- Regular Expressions, DFSAs and NDFSAs
- Grammars
= Semantics
- Natural Semantics
- Transition Semantics

11/2/19 73

i Language Syntax

= Syntax is the description of which strings of
symbols are meaningful expressions in a
language

= It takes more than syntax to understand a
language; need meaning (semantics) too

= Syntax is the entry point

11/2/19 74

‘ Syntax of English Language

= Pattern 1 Subject | Verb
David sings

The dog | barked

Susan | yawned

= Pattern 2 Subject Verb Direct Object

David sings | ballads
The professor | wants | to retire

The jury found | the defendant guilty

11/2/19 75

‘ Elements of Syntax

= Character set — previously always ASCII,
now often 64 character sets

= Keywords — usually reserved

= Special constants — cannot be assigned to
= Identifiers — can be assigned to

= Operator symbols

= Delimiters (parenthesis, braces, brackets)
= Blanks (aka white space)

11/2/19 76

’ Elements of Syntax

= Expressions
if ... then begin ... ; ... end else begin ... ; ... end
= Type expressions
typexpr, -> typexpr,
= Declarations (in functional languages)
let pattern, = expr, in expr
= Statements (in imperative languages)
a=b+c
= Subprograms
let pattern, = letrecinner = ... in expr

11/2/19 77

‘ Elements of Syntax

= Modules
= Interfaces
= Classes (for object-oriented languages)

11/2/19 78

i Lexing and Parsing

= Converting strings to abstract syntax trees
done in two phases
= Lexing: Converting string (or streams of
characters) into lists (or streams) of
tokens (the “words” of the language)
= Specification Technique: Regular Expressions
= Parsing: Convert a list of tokens into an
abstract syntax tree
= Specification Technique: BNF Grammars

11/2/19 79

i Formal Language Descriptions

= Regular expressions, regular grammars,
finite state automata

= Context-free grammars, BNF grammars,
syntax diagrams

= Whole family more of grammars and
automata — covered in automata theory

11/2/19

80

‘ Grammars

= Grammars are formal descriptions of which
strings over a given character set are in a
particular language

= Language designers write grammar

= Language implementers use grammar to
know what programs to accept

= Language users use grammar to know how
to write legitimate programs

11/2/19 81

