
9/16/19 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/16/19 2

Lists

n  List can take one of two forms:
n  Empty list, written []

n  Non-empty list, written x :: xs

n  x is head element, xs is tail list, :: called
“cons”

n  Syntactic sugar: [x] == x :: []

n  [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

9/16/19 3

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;

1]

9/16/19 4

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
 let bad_list = [1; 3.2; 7];;
 ^^^
This expression has type float but is here

used with type int

9/16/19 5

Question

n  Which one of these lists is invalid?

1.  [2; 3; 4; 6]
2.  [2,3; 4,5; 6,7]
3.  [(2.3,4); (3.2,5); (6,7.2)]
4.  [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

9/16/19 6

Answer

n  Which one of these lists is invalid?

1.  [2; 3; 4; 6]
2.  [2,3; 4,5; 6,7]
3.  [(2.3,4); (3.2,5); (6,7.2)]
4.  [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

§  3 is invalid because of last pair

9/16/19 7

Functions Over Lists

let rec double_up list =
 match list
 with [] -> [] (* pattern before ->,
 expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;

1; 1; 1]

9/16/19 8

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/16/19 9

Structural Recursion

n  Functions on recursive datatypes (eg lists)
tend to be recursive

n  Recursion over recursive datatypes generally
by structural recursion
n  Recursive calls made to components of structure

of the same recursive type
n  Base cases of recursive types stop the recursion

of the function

Question: Length of list

n  Problem: write code for the length of the list
n  How to start?

let length l =

9/16/19 10

Question: Length of list

n  Problem: write code for the length of the list
n  How to start?

let rec length l =
 match l with

9/16/19 11

Question: Length of list

n  Problem: write code for the length of the list
n  What patterns should we match against?

let rec length l =
 match l with

9/16/19 12

Question: Length of list

n  Problem: write code for the length of the list
n  What patterns should we match against?

let rec length l =
 match l with [] ->
 | (a :: bs) ->

9/16/19 13

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) ->

9/16/19 14

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is not empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) ->

9/16/19 15

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is not empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) -> 1 + length bs

9/16/19 16

9/16/19 17

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n  Nil case [] is base case
n  Cons case recurses on component list xs

Same Length

n  How can we efficiently answer if two lists
have the same length?

9/16/19 18

Same Length

n  How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
 match list1 with [] ->
 (match list2 with [] -> true
 | (y::ys) -> false)
 | (x::xs) ->
 (match list2 with [] -> false
 | (y::ys) -> same_length xs ys)
 9/16/19 19 9/16/19 20

Higher-Order Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/16/19 21

Iterating over lists

let rec fold_left f a list =
 match list
 with [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left
 (fun () -> print_string)
 ()
 ["hi"; "there"];;
hithere- : unit = ()

9/16/19 22

Recursing over lists

let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()

The Primitive
Recursion Fairy

9/16/19 23

Forward Recursion

n  In Structural Recursion, split input into
components and (eventually) recurse

n  Forward Recursion form of Structural
Recursion

n  In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

n  Wait until whole structure has been
traversed to start building answer

9/16/19 24

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/16/19 25

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
 Base Case Operator Recursive Call
let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
 Base Case Operator Recursive Call

9/16/19 26

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

 Base Case Operation Recursive Call

let append list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

9/16/19 27

Mapping Recursion

n  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

Same function, but no rec

9/16/19 28

Mapping Recursion

n  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

n  Same function, but no rec

9/16/19 29

Folding Recursion

n  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

9/16/19 30

Folding Recursion

n  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
n  Computes (2 * (4 * (6 * 1)))

9/16/19 31

Folding Recursion

n  multList folds to the right
n  Same as:
let multList list =
 List.fold_right
 (fun x -> fun p -> x * p)
 list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

9/16/19 32

How long will it take?

n  Remember the big-O notation from CS 225
and CS 374

n  Question: given input of size n, how long to
generate output?

n  Express output time in terms of input size,
omit constants and take biggest power

9/16/19 33

How long will it take?

Common big-O times:
n  Constant time O (1)

n  input size doesn’t matter
n  Linear time O (n)

n  double input ⇒ double time
n  Quadratic time O (n2)

n  double input ⇒ quadruple time
n  Exponential time O (2n)

n  increment input ⇒ double time

9/16/19 34

Linear Time

n  Expect most list operations to take
linear time O (n)

n  Each step of the recursion can be done
in constant time

n  Each step makes only one recursive call
n  List example: multList, append
n  Integer example: factorial

9/16/19 35

Quadratic Time

n  Each step of the recursion takes time
proportional to input

n  Each step of the recursion makes only one
recursive call.

n  List example:

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/16/19 36

Exponential running time

n  Poor worst-case running times on input of

any size

n  Each step of recursion takes constant time

n  Each recursion makes two recursive calls

n  Easy to write naïve code that is exponential

for functions that can be linear

9/16/19 37

Exponential running time

let rec slow n =

 if n <= 1
 then 1
 else 1+slow (n-1) + slow(n-2);;
val slow : int -> int = <fun>	

# List.map slow [1;2;3;4;5;6;7;8;9];;	

- : int list = [1; 3; 5; 9; 15; 25; 41; 67; 109]

9/16/19 38

Normal
call

h

g

f

…

An Important Optimization

n  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

9/16/19 39

Tail
call

h

f

…

An Important Optimization

n  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

n  Then h can return directly to f
instead of g

9/16/19 40

Tail Recursion

n  A recursive program is tail recursive if all
recursive calls are tail calls

n  Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

n  Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
n  May require an auxiliary function

9/16/19 41

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

n  What is its running time?

9/16/19 42

Comparison

n  poor_rev [1,2,3] =
n  (poor_rev [2,3]) @ [1] =
n  ((poor_rev [3]) @ [2]) @ [1] =
n  (((poor_rev []) @ [3]) @ [2]) @ [1] =
n  (([] @ [3]) @ [2]) @ [1]) =
n  ([3] @ [2]) @ [1] =
n  (3:: ([] @ [2])) @ [1] =
n  [3,2] @ [1] =
n  3 :: ([2] @ [1]) =
n  3 :: (2:: ([] @ [1])) = [3, 2, 1]

9/16/19 43

Comparison

n  rev [1,2,3] =
n  rev_aux [1,2,3] [] =
n  rev_aux [2,3] [1] =
n  rev_aux [3] [2,1] =
n  rev_aux [] [3,2,1] = [3,2,1]

9/16/19 44

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

9/16/19 45

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/16/19 46

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
-  : int = 24

9/16/19 47

Folding - Tail Recursion

-  # let rev list =
-  fold_left
-  (fun l -> fun x -> x :: l) //comb op
 [] //accumulator cell
 list

9/16/19 48

Folding

n  Can replace recursion by fold_right in any
forward primitive recursive definition
n  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

n  Can replace recursion by fold_left in any tail
primitive recursive definition

9/16/19 49

Continuations

n  A programming technique for all forms
of “non-local” control flow:
n  non-local jumps
n  exceptions
n  general conversion of non-tail calls to tail

calls

n  Essentially it’s a higher-order function
version of GOTO

9/16/19 50

Continuations

n  Idea: Use functions to represent the control
flow of a program

n  Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

n  Function receiving the result called a
continuation

n  Continuation acts as “accumulator” for work
still to be done

9/16/19 51

Continuation Passing Style

n  Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

9/16/19 52

Continuation Passing Style

n  A compilation technique to implement non-
local control flow, especially useful in
interpreters.

n  A formalization of non-local control flow in
denotational semantics

n  Possible intermediate state in compiling
functional code

Why CPS?

n  Makes order of evaluation explicitly clear
n  Allocates variables (to become registers) for each

step of computation
n  Essentially converts functional programs into

imperative ones
n  Major step for compiling to assembly or byte

code
n  Tail recursion easily identified
n  Strict forward recursion converted to tail recursion

n  At the expense of building large closures in heap

9/16/19 53

Other Uses for Continuations

n  CPS designed to preserve order of
evaluation

n  Continuations used to express order of
evaluation

n  Can be used to change order of evaluation
n  Implements:

n  Exceptions and exception handling
n  Co-routines
n  (pseudo, aka green) threads

9/16/19 54

9/16/19 55

Example

n  Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

n  Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
2
- : unit = ()

Simple Functions Taking Continuations

n  Given a primitive operation, can convert it to
pass its result forward to a continuation

n  Examples:
let subk (x, y) k = k(x + y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k(x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k(x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

9/16/19 56

Your turn now

Try Problem 7 on MP2
Try consk

9/16/19 57

Nesting Continuations

let add_triple (x, y, z) = (x + y) + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple (x,y,z)=let p = x + y in p + z;;
val add_three : int -> int -> int -> int = <fun>
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k: int * int * int -> (int -> 'a) ->

'a = <fun>

9/16/19 58

add_three: a different order

n  # let add_triple (x, y, z) = x + (y + z);;
n  How do we write add_triple_k to use a

different order?

n  let add_triple_k (x, y, z) k =

9/16/19 59

