Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2019

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/10/19

i Programming Languages & Compilers

Three Main Topics of the Course

New
Programming
Paradigm

Language
Translation

Language
Semantics

8/10/19 2

i Programming Languages & Compilers

Order of Evaluation

C Language !
Programmm ——rahslalicn— emantics

Specification to Implementation

8/10/19 3

i Programming Languages & Compilers

| : New Programming Paradigm

Environments||Patterns of || Continuation
and Recursion Passing
Closures Style

Functional

Programming

8/10/19 4

i Programming Languages & Compilers

Order of Evaluation

Environments| Patterns of

p—

A C \GC' alf I

Closures

Functions
Programming

Specification to Implementation

8/10/19 5

i Programming Languages & Compilers

Il : Language Translation

Lexing and Interpretation

Parsing

8/10/19 6

i Programming Languages & Compilers

Order of Evaluation

Specification to Implementation

8/10/19 7

i Programming Languages & Compilers

lll - Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

8/10/19 8

iProgramming Languages & Compilers

Order of Evaluation

Specification to Implementation

8/10/19 9

iContact Information - Elsa L Gunter

s Office: 2112 SC

= Office hours:
= Monday 10:30am — 11:20pm
» Wednesday 1:30pm — 2:20pm
= Also by appointment

x Email: equnter@illinois.edu

8/10/19 10

iCou rse TAS

Paul Krogmeier John Lee Leon Medvinsky

Jacob Laurel L|y|/L| AdithAya Murali

8/10/19 11

i Contact Information - TAs

= Teaching Assistants Office: 0207 SC

= Paul M Krogmeier
« Email: paulmk2@illinois.edu
= Hours: Wed 2:30pm — 3:20pm
Fri 2:30pm — 3:20pm
= Jacob Scott Laurel

=« Email: jlaurel2@illinois.edu
=« Hours: Fri 10:00am — 11:40pm

8/26/19

12

i Contact Information - TAs

= Teaching Assistants Office: 0207 SC

= John] Lee
= Email: jleel70@illinois.edu
= Hours: Tues 2:00pm — 2:50pm
Thurs 2:00pm — 2:50pm

=« Email: jlaurel2@illinois.edu
= Hours: Mon & Fri 1:00pm — 1:50pm

8/26/19

13

i Contact Information — TAs cont

= Leon Ken Medvinsky
» Email: leonkm2@illinois.edu
= Hours: Mon 2:30pm — 3:20pm,
Tues 11:00am-11:50am
= Adithya Murali
»« Email: adithya5@illinois.edu
= Hours: Tues & Thurs 10:00am — 10:50am

8/26/19 14

i Course Website

= https://courses.engr.illinois.edu/cs421/fa2019
= Main page - summary of news items
= Policy - rules governing course

= Lectures - syllabus and slides

= MPs - information about assignments
= Exams

= Unit Projects - for 4 credit students

= Resources - tools and helpful info

= FAQ

8/10/19 15

Some Course References

= No required textbook
= Some suggested references

modern
compiler
|mplementatlon
in ML

Compilers

.. ESSENTIALS)
OF PROGRAMMING
- LANGUAGES

andrew w. appe'l

8/10/19

i Some Course References

No required textbook.
Pictures of the books on previous slide

Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN:
0-201-10088-6.

Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

Additional ones for Ocaml given separately

8/10/19 17

i Course Grading

= Assignments 20%
= About 12 Web Assignments (WA) (~7%)
= About 5 MPs (in Ocaml) (~6%)
= About 6 Labs (~7%)
= All WAs and MPs Submitted by PrairieLearn
= Late submission penalty: 20%
« Labs in Computer-Based Testing Center
(Grainger)
= Self-scheduled over a four day period
= Rules of CBTF apply
« Fall back: Labs become MPs

8/10/19 18

i Course Grading

s 2 Midterms - 20% each

= La
= Se
= Fa

ps in Computer-Based Testing Center (Grainger)
f-scheduled over a four day period

| back: In class backup dates — Oct 7, Nov 18

= BE AVAILABLE FOR FALL BACK DATES!

= Final

40% - CBTF

= Fall back: In class backup date: Dec 20,
/:00pm-10:00pm

= Percentages are approximate

8/10/19 19

i Course Assingments — WA & MP

= You may discuss assignments and their solutions
with others

= You may work in groups, but you must list
members with whom you worked if you share
solutions or solution outlines

= Each student must write up and turn in their
owhn solution separately

= You may look at examples from class and other
similar examples from any source — cite
appropriately
= Note: University policy on plagiarism still holds - cite your
sources if you are not the sole author of your solution

= Do not have to cite course notes or me

8/10/19 20

Course Objectives

= New programming paradigm
= Functional programming
= Environments and Closures
= Patterns of Recursion
= Continuation Passing Style

= Phases of an interpreter / compiler
= Lexing and parsing
= Type systems
= Interpretation

= Programming Language Semantics
« Lambda Calculus
= Operational Semantics
= Axiomatic Semantics

8/10/19

21

i OCAML

= Locally:
= Compiler is on the EWS-linux systems at
/usr/local/bin/ocam|

= Globally:

« Main CAML home: http://ocaml.org

= To install OCAML on your computer see:
http://ocaml.org/docs/install.html

= T0 try on the web: https://try.ocamlpro.com

8/10/19

22

i References for OCaml

= Supplemental texts (not required):

= The Objective Caml system release 4.05, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’ Reilly

= Available online from course resources

8/10/19 23

i OCAML Background

= CAML is European descendant of original ML
= American/British version is SML
= O is for object-oriented extension

= ML stands for Meta-Language
= ML family designed for implementing
theorem provers

= It was the meta-language for programming the
“object” language of the theorem prover

= Despite obscure original application area, OCAML
is a full general-purpose programming language

8/10/19 24

i Features of OCAML

Higher order applicative language
Call-by-value parameter passing
Modern syntax

Parametric polymorphism
= Aka structural polymorphism

Automatic garbage collection
User-defined algebraic data types

It’ s fast - winners of the 1999 and 2000 ICFP
Programming Contests used OCAML

8/10/19

25

i Why learn OCAML?

= Many features not clearly in languages you have
already learned

= Assumed basis for much research in programming
language research

= OCAML is particularly efficient for programming tasks
involving languages (eg parsing, compilers, user
interfaces)

= Industrially Relevant:

= Jane Street trades billions of dollars per day using OCaml
programs

= Major language supported at Bloomberg
= Similar languages: Microsoft F#, SML, Haskell, Scala

8/10/19 26

iSession iIn OCAML

% ocaml
Objective Caml version 4.01

(* Read-eval-print loop; expressions and
declarations

2+ 3 (* Expression *)
- rint=15
#3<2:;
- : bool = false

8/10/19

27

i No Overloading for Basic Arithmetic Operations

15 * 2;;
-1 int = 30
#1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
1.35 + 0.23;; (* Wrong type of addition *)

NANANAN

Error: This expression has type float but an
expression was expected of type

Int
1.35 +. 0.23;;
- : float = 1.58

8/10/19 28

i No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;: (* No Implicit Coercion *)
NANN

Error: This expression has type float but an
expression was expected of type

INt

8/10/19

29

i Sequencing Expressions

"Hi there”;; (* has type string *)

- : string = "Hi there"

print_string "Hello world\n";; (* has type unit *)
Hello world

-1 unit = ()

(print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye

-:int=25

8/10/19 30

i Declarations; Sequencing of Declarations

#letx =2+ 3;; (* declaration *)

valx:int=5

lettest =3 < 2;;

val test : bool = false

#leta=1letb =a + 4;; (* Sequence of dec
*)

vala:int=1

valb:int=5

8/10/19 31

i Environments

s Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language

= Notation

p = {name,; — value,;, name,— value,, ...}
Using set notation, but describes a partial function

= Often stored as list, or stack
= 10 find value start from left and take first match

8/10/19 32

i Environments

name = “Steve”

X=2>3

vy D> 17 region =» (5.4, 3.7)

— id =» {Name = “Paul’, \
b =» true Age = 23,
SSN = 992888777}

—

8/10/19 33

iGlobal Variable Creation

2+ 3;; (* Expression *)

/[doesn’ t affect the environment

lettest = 3 < 2;; (* Declaration *)
val test : bool = false

/| p,; = {test — false}

#leta=1letb =a + 4;; (* Seq of dec *)
/| p, ={b—5,a— 1, test — false}

8/10/19 34

i Environments

test =» true

b=>5

8/10/19

35

iNew Bindings Hide Old

/| p,={b—75,a— 1, test — false}
let test = 3.7;;

= What is the environment after this
declaration?

8/10/19

36

iNew Bindings Hide Old

/| p,={b—75,a— 1, test — false}
let test = 3.7;;

= What is the environment after this
declaration?

/| p;={test—=3.7,a—1,b—5}

8/10/19

37

i Environments

test = 3.7

b=>5

8/10/19

38

Now it's your turn

You should be able to do WA1
Problem 1, parts (* 1 *) and (* 2 *)

8/10/19 39

iLocaI Variable Creation
/[ps ={test = 3.7, a—=1,b— 5@

#letb=5%*4
/] p4 = {b — 20,

in2*b;; |
-1int =40
/] ps = p;= {test = 3.7,a—-1,b—5} |
b” s test > 3.7

b=>5

-:int=5

8/10/19 40

*Local let binding

/| ps={test—-=3.7,a—1,b—=53~A

letc =
etb=d+ a

/I pg =1b — 2} + ps

// ={b - 2,test - 3.7,a = 1}
nb*b;;

valc:int=4

/| p;={c—=4,test —-3.7,a—1,b—5}

b;;

-:int=5

a 1 test = 3.7

b=>5

8/10/19 41

iLocaI let binding

/| ps = {test - 3.7,a—1,b—5~
letc =
etb =

// P = {b —> 2} + P53 =
/"~ Z1b = 2 1est= = 1)
nb b;/

valc:int=4

/[p={c—4,test=3.7,a—1,b—5}
b;;

-:int=5

test = 3.7

8/10/19 o

iLocaI let binding

a test = 3.7

/| ps={test—=3.7,a—1,b—=5- 1 N
let c = /

et b="a~%g 251 test>37
/[l pg =4b— 2} Fps — D
/| ={b—>2 test—=Fg > 1}

|n > test = 3.7
valc:int=4 :9411 b> 5
/| p;={c—=4,test —-3.7,a—1,b—5}
b,
-:int=>5

8/10/19 43

Now it's your turn

You should be able to do WA1
Problem 1, parts (* 3 *) and (* 4 *)

8/10/19 44

iBooleans (aka Truth Values)

true;;

- : bool = true

false;;

- : bool = false

/| p={c—=4,test -=3.7,a—1,b—5}
#1f b > athen 25 else 0;;

-:int =25

8/10/19

45

i Booleans and Short-Circuit Evaluation

#3>1&&4 >6;;

- : bool = false

#3>114>6;;

- : bool = true

(print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi

- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

not (4 > 6);;

- : bool = true

8/10/19 46

Now it's your turn

You should be able to do WA1
Problem 1, part (* 5 *)

8/10/19

iTupIes as Values

// p7={C%4,teSt%3.7, 31 b>5
3 — 1, b . 5} test = 3.
] c=2>4
let s = (5,"hi",3.2);;
val s : int * string * float = (5, "hi", 3.2)

/] pg ={s — (5, "hi", 3.2),
c — 4, test — 3.7/,
a—1,b—=5)

b=>5
a=>1 test & 3.7
c=24

s 2 (5, ”hi’, 3.2)

8/10/19 48

i Pattern Matching with Tuples

[pg=1{s —= (5, "hi", 3.2), ad1 P2 4337
c — 4, test — 3.7, cD4
a—1,b—5}

let =s;; (*(a,b,c)is a pattern *

vala:int=5

val b : string = "hi"

val c : float = 3.2

let x = 2, 9.3;; (* tuples don't require
Ocaml *)

val x : int * float = (2, 9.3)

8/10/19 49

s (5, ”hi’, 3.2)

a=>5
s = (5, 7hi”, 3.2) ¢ = 3.2

x> (2,9.3)

i Nested Tuples

(*Tuples can be nested *)

letd = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

val p :int * int * int = (1, 4, 62)

val st : string = "bye"

8/10/19 50

+

Now it's your turn

You should be able to do WA1
Problem 1, part (* 6 *)

8/10/19

i Functions

let plus_twon=n+ 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-1 int =19

8/10/19 52

iFunctions

let plus_twon=n+ 2;;

/

plus_two 17;;

8/10/19

53

iNameless Functions (aka Lambda Terms)

a:

r----;,
funn->n+ 2;;

"i"""‘bv .
(funn->n+2)17;;
- rint = 19/

8/10/19 54

i Functions

let plus_twon=n+ 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-:int =19

let plus_two = n->n+ 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

-:int = 16

\First definition syntactic sugar for second\

8/10/19 55

i Using a nameless function

(fun x->x*3)5;; (* An application *)

-:int =15

#((funy->y +.2.0), (funz->2z*3));;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

8/10/19 56

iVaIues fixed at declaration time

#let x = 12;; >
val x :int = 12

let plus_x yr=\y + X;;
val plus_x : int -> int = <fun>

plus_x 3;;

What is the result?

8/10/19 57

iVaIues fixed at declaration time

#letx =12;;

val X :int = 12

letplus Xy =y + x;;

val plus_x : int -> int = <fun>
plus_x 3;;

-1 int = 15

8/10/19 58

iVaIues fixed at declaration time

#letx =7;; (* New declaration, not an
update *)

val X 1 int = 7

plus_x 3;;

What is the result this time?

8/10/19

59

iVaIues fixed at declaration time

#letx =7;; (* New declaration, nat an

update *)
valx:int =7

% plus_x)3;,;

| What is the result this time?

8/10/19 60

iVaIues fixed at declaration time

#letx =7;; (* New declaration, not an
update *)

val X 1 int = 7

plus_x 3;;
-:int =15

8/10/19

61

i Question

s Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

= Answer: a closure

8/10/19 62

i Save the Environment!

= A closureis a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:
f — < (vl,..,vn) — exp, ps >

= Where pr is the environment in effect when f
is defined (if f is a simple function)

8/10/19 63

i Closure for plus_x

= When plus_x was defined, had environment:

p|Z)|US_X = {l X — 12, }
= Recall: let plus_xy =y + x

is really let plus_x =funy->vy + x
s Closure for funy ->vy + x:

<y —=YVY +X, pplus_x >
= Environment just after plus_x defined:

1plus_x — <y =y + X, Pplus_x >} + Pplus_x

8/10/19

64

Now it's your turn

You should be able to do WA1
Problem 1, parts (* 7 *) and (* 8 *)

8/10/19 65

i Evaluation of Application of plus_x::

= Have environment:
p ={plus_ X = <y =y + ¥, Oplus_x 7 -+ 1
y—3, ..}

where Pplus x = {X—=12, ...,y —= 24, ...}
= Eval (plus_x vy, p) rewrites to
= App (Eval(plus_x, p) , Eval(y, p)) rewrites to
= App (<Y = Y + X, ppjys_x > 3) rewrites to
= Eval (y + x, {y — 3} "‘Pplus_x) rewrites to
= Eval (3 + 12, pplus_x) =15

8/10/19 66

i Functions with more than one argument

letadd_threexyz=x+vy + z;;

val add _three : int -> int -> int -> int = <fun>

lett = add_three 6 3 2;;

valt:int =11

let add_three =
funx->(funy->(funz->x+vy+2);;

val add three : int -> int -> int -> int = <fun>

\Again, first syntactic sugar for second |

8/10/19 67

iPartiaI application of functions

‘Iet add_threexyz=x+vy + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-1int =12

#h7:;

-1 int = 16

8/10/19

68

i Functions as arguments

let thrice f x = f (f (f X));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#94;;

-:int =10

thrice (fun s -> "Hil " s) "Good-bye!";:
- 1 string = "Hi! Hi! Hi! Good-bye!"

8/10/19

69

#
va
#

#

i Functions on tuples

et plus_pair (h,m) = n + m;;
plus_pair : int * int -> int = <fun>
dlus_pair (3,4);;

int =7/

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>
double 3;;

int * int = (3, 3)

double "hi";;

string * string = ("hi", "hi")

8/10/19

70

i Match Expressions

let triple_to_pair triple =

triple
(0, %, y)
(%, 0,)
X, ¥,)

(X, Y)
(X, Y)
(X, ¥);

*Each clause: pattern on
left, expression on right

*Each x, y has scope of
only its clause

*Use first matching clause

val triple_to_pair : int * int * int -> int * int =

<fun>

8/10/19

71

i Closure for plus_pair

= ASSUME pyus nair WaSs the environment just
before plus_pair defined

= Closure for plus_pair:
<(h,m) - n+ m, Pplus_pair>
= Environment just after plus_pair defined:
{plus_pair — <(n,m) — n + m, ppys pair >+

T Pplus_pair

8/10/19 72

