
Sample Questions for Midterm 2 (CS 421 Fall 2019)

Some of these questions may be reused for the exam.

1. Write the definition of an OCAML variant type reg_exp to express abstract syntax trees for

regular expressions over a base character set of booleans. Thus, a boolean is a reg_exp, epsilon
is a reg_exp, the concatenation of two reg_exp’s is a reg_exp, the “choice” of two reg_exp’s is
a reg_exp, and the Kleene star of a reg_exp is a reg_exp.

2. Given a polymorphic type derivation for {} |- let id = fun x -> x in id id true : bool
3. Give a (most general) unifier for the following unification instance. Capital letters denote

variables of unification. Show your work by listing the operation performed in each step of the
unification and the result of that step.

{X = f(g(x),W); h(y) = Y; f(Z,x) = f(Y,W)}
4. For each of the following descriptions, give a regular expression over the alphabet {a,b,c}, and

a regular grammar that generates the language described.
a. The set of all strings over {a, b, c}, where each string has at most one a

b. The set of all strings over {a, b, c}, where, in each string, every b is immediately followed

by at least one c.

c. The set of all strings over {a, b, c}, where every string has length a multiple of four.

5. Consider the following grammar:
<S> ::= <A> | <A> <S>
<A> ::= <Id> | (
 ::= <Id>] | <Id> | (
<Id> ::= 0 | 1

For each of the following strings, give a parse tree for the following expression as an <S>, if
one exists, or write “No parse” otherwise:

a. (0 1 (1] ((1 0] 1
b. 0 (1 0 (1]
c. (0 (1 0 1] 0]

6. Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase

are terminals):
S ::= A a B | B a A
A ::= b | c
B ::= a | b

7. Write an unambiguous grammar generating the set of all strings over the alphabet {0, 1, +, -},
where + and – are infixed operators which both associate to the left and such that + binds more
tightly than -.

8. Write an ocamlyacc parser for the language

<S> = <V> | fun <V> -> <S> | <S><S>
where <V> is any identifier, application (<S><S>) associates to the left and has higher
precedence than fun <V> -> <S> . You should include in your header one or more datatypes
for the abstract syntax trees of the language. You declarations should give the constructors for
the datatype token of the tokens input into the parser.

