
MP 5 – An Evaluator for PicoML
CS 421 – Fall 2017

Revision 1.0

Assigned November 17, 2017
Due November 30, 2017
Extension December 2, 2017

1 Change Log
1.0 Initial Release.

2 Overview
Previously, you created a lexer, a parser, and a type inferencer for PicoML. Finally, your hard work will pay off –
it is time to create an evaluator for PicoML programs. Lexing, parsing, and type inferencing will be taken care of
automatically (you have already implemented these parts in previous MPs.) Your evaluator can assume that its input
is correctly typed.

Your evaluator will be responsible for evaluating two kinds of things: declarations, and expressions. At top level,
your evaluator will be called on a declaration or an expression with an empty memory. It will recurse on the parts,
eventually returning the binding.

3 Types
For this assignment, one should note the difference between expressions and values. An expression is a syntax tree,
like 2 + (4 ∗ 3) or (3 < 4), whereas a value is a single object, like 14 or true. A value is the result of evaluating an
expression. Note that closures are values representing functions.

Recall that we represent PicoML programs with the following OCaml types defined in Common:

type const =
BoolConst of bool | IntConst of int | FloatConst of float

| StringConst of string | NilConst | UnitConst
type bin_op = IntPlusOp | IntMinusOp | IntTimesOp | IntDivOp

| FloatPlusOp | FloatMinusOp | FloatTimesOp | FloatDivOp
| ConcatOp | ConsOp | CommaOp | EqOp | GreaterOp
| ModOp | ExpoOp

type mon_op = HdOp | TlOp | PrintOp | IntNegOp | FstOp | SndOp
type exp = (* Exceptions will be added in later MPs *)

| VarExp of string (* variables *)
| ConstExp of const (* constants *)
| MonOpAppExp of mon_op * exp (* % e1 for % is a builtin monadic operator *)
| BinOpAppExp of bin_op * exp * exp (* e1 % e2 for % is a builtin binary operator *)
| IfExp of exp * exp * exp (* if e1 then e2 else e3 *)
| AppExp of exp * exp (* e1 e2 *)
| FunExp of string * exp (* fun x -> e1 *)
| LetInExp of string * exp * exp (* let x = e1 in e2 *)

1

| LetRecInExp of string * string * exp * exp (* let rec f x = e1 in e2 *)
| RaiseExp of exp (* raise e *)
| TryWithExp of (exp * int option * exp * (int option * exp) list)

(* try e with i -> e1 | j -> e1 | ... | k -> en *)

type dec =
Anon of exp

| Let of string * exp (* let x = exp *)
| LetRec of string * string * exp (* let rec f x = exp *)

With these, we form a PicoML abstract syntax tree. A PicoML AST will be the input to your evaluator. The output
given by evaluating an AST expression has value type. The value type is defined in Common:

type memory = (string * value) list
and value =

UnitVal | BoolVal of bool
| IntVal of int | FloatVal of float
| StringVal of string | PairVal of value * value
| Closure of string * exp * memory | ListVal of value list
| RecVarVal of string * string * exp * memory | Exn of int

Values can also be stored in memory. Memory serves as both input to your evaluator in general, and output from
your evaluator when evaluating declarations. For example, one evaluates a declaration starting from some initial
memory, and a list of bindings to be printed by the interpreter and an incremental memory are returned.

We will represent our memory using a value env. That is, we will use the env type from previous MPs to hold
value types.

Recall from MP3 the use of the ’a env type defined in Common:

type ’a env = (string * ’a) list

You can interact with the env type by using functions defined in Common:

let make_env x y = ([(x,y)]:’a env)
let lookup_env (gamma:’a env) x = lookup gamma x
let sum_env (delta:’a env) (gamma:’a env) = ((delta@gamma):’a env)
let ins_env (gamma:’a env) x y = sum_env (make_env x y) gamma

val make_env : string -> ’a -> ’a env = <fun>
val lookup_env : ’a env -> string -> ’a option = <fun>
val sum_env : ’a env -> ’a env -> ’a env = <fun>
val ins_env : ’a env -> string -> ’a -> ’a env = <fun>

4 Compiling, etc...
For this MP, you will only have to modify mp5.ml adding the functions requested. To test your code, type make and
the three needed executables will be built: picomlInterp, picomlInterpSol and grader. The first two are
explained below. The executable grader checks your implementation against the solution for a fixed set of test cases
as given in the tests file.

4.1 Given Files
mp5.ml: This file will contain the evaluator code. This is the ONLY file that you will have to modify.

2

picomlInterp.ml: This file contains the main body of the picomlInterp and picomlInterpSol executables.
It handles lexing, parsing, and type inferences, and calls your evaluation functions, while providing a friendly
prompt to enter PicoML concrete syntax.

picomllex.cmo, .cmi: These files contain the compiled lexing code.

picomlyacc.cmo: This file contains the compiled parsing code.

You may want to work interactively with your code in OCaml. To facilitate your doing this, and because there are
more files than usual to load, we have included in mp5 a file .ocamlinit that is executed by ocaml every time it
is started in the directory mp5. The contents of the file are:

#load "common.cmo";;
#load "picomlparse.cmo";;
#load "picomllex.cmo";;
#load "solution.cmo";;
open Common;;
#use "mp5.ml";;

4.2 Running PicoML
The given Makefile builds executables called picomlInterp and picomlInterpSol. The first is an exe-
cutable for an interactive loop for the evaluator built from your solution to the assignment and the second is built from
the standard solution. If you run ./picomlInterp or ./picomlInterpSol, you will get an interactive screen,
much like the OCaml interactive screen. You can type in PicoML declarations (followed by a double semicolon), and
they will be evaluated, and the resulting binding will be displayed.

At the command prompt, the programs will be evaluated (or fail evaluation) starting from the initial memory, which
is empty. Each time, if evaluation is successful, the resulting memory will be displayed. Note that a program can fail
at any of several stages: lexing, parsing, type inferencing, or evaluation itself. Evaluation itself will tend to fail until
you have solved at least some of the problems to come.

3

Part 1
Problems in Part 1 of this MP are mandatory for all students. Part 2 is mandatory for only grad students. Undergrads
may submit a solution for Part 2 for extra credit. Part 1 does not contain any exception handling. Part 2 will cover
exceptions.

5 Problems
These problems ask you to create an evaluator for PicoML by writing the functions eval dec, and eval exp as
specified. In addition, you are asked to implement the functions const to val, monOpApply and binOpApply.

For each problem, you should refer to the list of rules given as part of the problem. The rules specify how
evaluation should be carried out, using natural semantics. Natural semantics were covered in class; see the lecture
notes for details.

Here are some guidelines:

• eval dec takes a top-level declaration and a memory, and returns a string option, value, and memory. Its type
is dec * memory -> (string option * value) * memory.

• eval exp takes an expression and a memory, and returns a value. Its type is exp * memory -> value.

The problems are ordered such that simpler and more fundamental concepts come first. For this reason, it is
recommended that you solve the problems in the order given. Doing so may make it easier for you to test your
solution before it is completed.

Here is a key to interpreting the rules:

d = top-level declaration

m = memory represented as a value env

e = expression

v = value

– n, i, j = integer

– r = float

– s = string

– c = monadic (unary) operator

x = identifier/variable

f = identifier/variable of functional type

t = constant

As mentioned, you should test your code in the executable PicoML environment. The problem statements that
follow include some examples. However, the problem statements also contain test cases that can be used to test your
implementation in the OCaml environment.

1. Expression as a Declaration (5 pts)

Extend eval dec (dec, m) to handle expressions that come as top-level declarations. In general (see Problem
3) eval dec takes a declaration and a memory, and returns the memory updated with the bindings introduced by
the declaration.

When evaluating an expression as a declaration, since there is no concrete identifier that can be bound, we use the
wildcard underscore () for the return identifier, represented by None.

4

(e,m) ⇓ v

(e;; , m) ⇓ ((, v),m)

You need to implement this rule first to be able to test other cases in the interactive top level of PicoML. We can’t
actually test this rule without the benefits of at least one rule for evaluating an expression.

2. Constants (5 pts)

Extend eval exp (exp, m) to handle non-functional constants (i.e. integers, bools, real numbers, strings, nil,
and unit). For this question you will need to implement const to val: const -> value. This function
takes a constant and returns the corresponding value.

(t,m) ⇓ const to val(t)

In the PicoML environment,

> 2;;

result:
_ = 2

A sample test case for the OCaml environment:

eval_exp (ConstExp(IntConst 2), []);;
- : Common.value = IntVal 2

The code that corresponds to what happens at the top level in picomlInterp is the following:

eval_dec (Anon(ConstExp(IntConst 2)), []);;
- : (string option * Common.value) * Common.memory =
((None, IntVal 2), [])

3. Let Declarations (3 pts)

Extend eval dec (dec, m) to handle let-declarations. eval dec takes a top-level declaration and a memory,
and returns the binding introduced by the declaration together with the memory updated with that binding.

(e,m) ⇓ v

(let x = e;; , m) ⇓ ((x, v), {x→ v}+m)

In the PicoML environment,

> let x = 2;;

result:
x = 2

A sample test case for the OCaml environment:

5

eval_dec (Let("x", ConstExp(IntConst 2)), []);;
- : (string option * Common.value) * Common.memory =
((Some "x", IntVal 2), [("x", IntVal 2)])

4. Identifiers (no recursion) (5 pts)

Extend eval exp (exp, m) to handle identifiers (i.e. variables) that are not recursive. These are identifiers in
m that do not have a value of the form RecV arV al〈...〉, (recursive identifiers are handled later).

m(x) = v ∀f, y, e, m′. v 6= RecV arV al(f, y, e,m′)

(x,m) ⇓ v

Here is a sample test case.

eval_exp (VarExp "x", [("x", IntVal 2)]);;
- : Common.value = IntVal 2

In the PicoML environment, if you have previously successfully done Problem 5, you can test this problem with:

> x;;

result:
_ = 2

5. Monadic Operator Application (8 pts)

Extend eval exp (exp, m) to handle application of monadic operators ˜, hd, tl, fst, snd and print string.
For this question, you need to implement the function monOpApply: mon op -> value -> value fol-
lowing the table below.

(Hint: Check how we represent lists and pairs with the value type)

operator argument operation
hd a list return the head of the list
tl a list return the tail of the list
fst a pair return the first element of the pair
snd a pair return the second element of the pair
˜ an integer return the negated integer
print string a string print the string to std out, return unit

(e,m) ⇓ v monOpApply(mon, v) = v′

(mon e,m) ⇓ v′

where mon is a monadic constant function value.

Note: Unless you are going to do Part 2, you should raise an OCaml exception if hd or tl is applied to an empty
list. In Part 2, this is handled in a different way. Please see Problem 16 for the other possiblity for how to handle
this.

A sample test case in the PicoML interpreter:

6

> ˜2;;

result:
_ = ˜2

A sample test case in the OCaml environment:

monOpApply IntNegOp (IntVal 2);;
- : Common.value = IntVal (-2)
eval_exp (MonOpAppExp(IntNegOp, ConstExp (IntConst 2)), []);;
- : Common.value = IntVal (-2)

6. Binary Operators (8 pts)

Extend eval exp (exp, m) to handle the application of binary operators. In the rule, we will denote the
binary operator by ⊕. For this question, you need to implement the binOpApply : bin op -> (value

* value) -> value function. The table below gives the outputs for given inputs to binOpApply.

operator arguments operation
"+" Two integers Addition
"-" Two integers Subtraction
"*" Two integers Multiplication
"/" Two integers Division
"mod" Two integers Modulus
"+." Two floating numbers Addition
"-." Two floating numbers Subtraction
"*." Two floating numbers Multiplication
"/." Two floating numbers Division
"**" Two floating numbers Power
"ˆ" Two strings Concatenation
"::" A value and a list Cons
"," Two values Pairing
"=" Two values Equality comparison
">" Two values Greater than

(e1,m) ⇓ v1 (e2,m) ⇓ v2 binOpApply(⊕, v1, v2) = v

(e1 ⊕ e2,m) ⇓ v

Note: For equality and other comparison operators, use the overloaded equality and comparison operators of
OCaml directly on the objects of type value.

A sample test case.

eval_exp (BinOpAppExp(IntPlusOp,
ConstExp(IntConst(3)),
ConstExp(IntConst(4))), []) ;;

- : Common.value = IntVal 7

In the PicoML environment, you can test this problem with:

7

> 3 + 4;;

result:
_ = 7

7. If constructs (5 pts)

Extend eval exp (exp, m) to handle if constructs.

(e1,m) ⇓ true (e2,m) ⇓ v

if e1 then e2 else e3 ⇓ v

(e1,m) ⇓ false (e3,m) ⇓ v

if e1 then e2 else e3 ⇓ v

A sample test case.

eval_exp (IfExp(ConstExp(TrueConst),
ConstExp(IntConst 1),
ConstExp(IntConst 0)), []);;

- : Common.value = IntVal 1

In the PicoML environment,

> if true then 1 else 0;;

result:
_ = 1

8. Let-in expression (6 pts)

Extend eval exp (exp, m) to handle let-in expressions.

(e1,m) ⇓ v1 (e2, {x→ v1}+m) ⇓ v2

(let x = e1 in e2,m) ⇓ v2

A sample test case.

eval_exp (LetInExp ("y", ConstExp (IntConst 5), VarExp "y"), []);;
- : Common.value = IntVal 5

In the PicoML environment,

> let y = 5 in y;;

result:
_ = 5

8

9. Functions (5 pts)

Extend eval exp (exp, m) to handle functions. You will need to return a ClosureVal represented by
〈x→ e,m〉 in the rule below.

(fun x -> e,m) ⇓ 〈x→ e,m〉

A sample test case.

eval_exp (FunExp ("x", VarExp "x"), []);;
- : Common.value = ClosureVal ("x", VarExp "x", [])

In the PicoML environment,

> fun x -> x;;

result:
_ = <some closure>

10. Function application (6 pts)

Extend eval exp (exp, m) to handle function application.

(e1,m) ⇓ 〈x→ e′,m′〉 (e2,m) ⇓ v′ (e′, {x→ v′}+m′) ⇓ v

(e1e2,m) ⇓ v

A sample test case.

eval_exp (AppExp (FunExp ("x", VarExp "x"), ConstExp (IntConst 7)), []);;
- : Common.value = IntVal 7

In the PicoML environment,

> (fun x -> x) 7;;

result:
_ = 7

11. Recursive Declarations (5 pts)

Extend eval dec (dec, m) to handle recursive declarations. In Picoml, recursive declarations are restricted
to defining functions. Within there bodies, they are allowed to be referenced. A non-recursive function declaration
evaluates to a closure containing the environment that was in effect before the function declaration was made.
Variables in the body aquire their meaning from the formal parameter or from this stored environment. In the case
of a recursive function declaration, we have the problem that we also may have the variable naming this function
used in its body. The environment in effect before the recursive declaration does not have this variable in it. We
need to create an environment that has a value for the recursive variable, but that value needs to be a closure that
contains the environment we are trying to create. We solve this problem by recording a “recursive variable value”
for the variable in the environment in the closure for its value instead of its actual value. This “recursive variable
value” basically is a prescription for how to build the needed value, i.e., the needed closure, whenever we call the
variable. Since this “recursive variable value” is a prescription for building a closure, not surprisingly it will have
all the components of a closure, but since it is a prescription, it has a different constructor. RecV arV al(f, x, e,m)

9

is the value we will associate with recursive function variable. It keeps track of the recursive variable f , its formal
parameter x, its bound expression e, and a memory m in effect when the recursive declaration was made.

(let rec f x = e , m) ⇓ ((Some f,RecV arV al(f, x, e,m)), {f → RecV arV al(f, x, e,m)}+m)

A sample test case.

eval_dec (LetRec ("even", "x",
IfExp (BinOpAppExp (EqOp, VarExp "x", ConstExp (IntConst 0)),
ConstExp (TrueConst),
IfExp (BinOpAppExp (EqOp, VarExp "x", ConstExp (IntConst 1)),
ConstExp (FalseConst),
AppExp (VarExp "even",
BinOpAppExp (IntMinusOp, VarExp "x", ConstExp (IntConst 2)))))), []);;

- : (string option * Common.value) * Common.memory =
((Some "even",

RecVarVal ("even", "x",
IfExp (BinOpAppExp (EqOp, VarExp "x", ConstExp (IntConst 0)),
ConstExp TrueConst,
IfExp (BinOpAppExp (EqOp, VarExp "x", ConstExp (IntConst 1)),
ConstExp FalseConst,
AppExp (VarExp "even",
BinOpAppExp (IntMinusOp, VarExp "x", ConstExp (IntConst 2))))),

[])),
[("even",

RecVarVal ("even", "x",
IfExp (BinOpAppExp (EqOp, VarExp "x", ConstExp (IntConst 0)),
ConstExp TrueConst,
IfExp (BinOpAppExp (EqOp, VarExp "x", ConstExp (IntConst 1)),
ConstExp FalseConst,
AppExp (VarExp "even",
BinOpAppExp (IntMinusOp, VarExp "x", ConstExp (IntConst 2))))),

[]))])

In the PicoML environment,

> let rec even x = if x = 0 then true else if x = 1 then false else even (x - 2);;

result:
even = <some recvar>

12. Recursive Identifiers (12 pts)

Extend eval exp (exp, m) to handle recursive identifiers. These are identifiers that evaluate to RecV arV al(f, x, e,m′)
for identifiers f and x, some expression e, and a memory m′.

m(f) = RecV arV al(g, y, e,m′)

(f,m) ⇓ 〈y → e, {g → RecV arV al(g, y, e,m′)}+m′〉

In the PicoML environment, once you have done Problem 5, you can try:

10

> let rec even x = if x = 0 then true else if x = 1 then false else even (x - 2);;

result:
even = <some recvar>
> even 3;;

result:
_ = false

13. Let-rec-in expression (8 points)

Extend eval exp (exp, m) to handle let-rec-in expressions:

(e2, {f → RecV arV al(f, x, e1,m)}+m) ⇓ v

(let rec f x = e1 in e2,m) ⇓ v

In the PicoML environment, once you have done Problem 5, you can try:

> let rec f x = if x = 0 then 1 else x * f (x - 1) in f 3;;

result:
_ = 6

11

Part 2
This part is mandatory for grad students. It is extra credit for undergrads.

Part 1 simply ignored exceptions. In this section we include them in our language. First of all, we use the value
constructor Exn of int in our value type to represent the raising of an exception.

An exception propagates through the evaluations. That is, if a subexpression of an expression evaluates to an
exception, then the main expression also evaluates to the exception without evaluating the remaining subexpressions.
We need to update our evaluation rules to handle this situation.

Expression Rules
Constants

(t,m) ⇓ const to val(t)

Non-recursive Variables

m(x) = v ∀f, y, e′, m′. v 6= RecV arV al(f, y, e′,m′)

(x,m) ⇓ v

Monadic Operator Application

(e,m) ⇓ v ∀i. v 6= Exn(i) monOpApply(mon op, v) = v′

(mon op e,m) ⇓ v′

(e,m) ⇓ Exn(i)

(mon op e,m) ⇓ Exn(i)

Binary Operator Application

(e1,m) ⇓ v1 (e2,m) ⇓ v2 ∀i. v1 6= Exn(i) ∧ v2 6= Exn(i) binOpApply(⊕, v1, v2) = v

(e1 ⊕ e2,m) ⇓ v

(e1,m) ⇓ Exn(i)

(e1 ⊕ e2,m) ⇓ Exn(i)

(e1,m) ⇓ v ∀i. v 6= Exn(i) (e2,m) ⇓ Exn(j)

(e1 ⊕ e2,m) ⇓ Exn(j)

If Expression

(e1,m) ⇓ true (e2,m) ⇓ v

if e1 then e2 else e3 ⇓ v

(e1,m) ⇓ false (e3,m) ⇓ v

if e1 then e2 else e3 ⇓ v

(e1,m) ⇓ Exn(i)

if e1 then e2 else e3 ⇓ Exn(i)

12

Application

(e1,m) ⇓ 〈x→ e′,m′〉 (e2,m) ⇓ v′ ∀i. v′ 6= Exn(i) (e′, {x→ v′}+m′) ⇓ v

(e1e2,m) ⇓ v

(e1,m) ⇓ Exn(i)

(e1e2,m) ⇓ Exn(i)

(e1,m) ⇓ v ∀j. v 6= Exn(j) (e2,m) ⇓ Exn(i)

(e1e2,m) ⇓ Exn(i)

Functions

(fun x -> e,m) ⇓ 〈x→ e,m〉

Let Expression

(e1,m) ⇓ v1 v1 6= Exn(i) (e2,m+ {x→ v1}) ⇓ v2

(let x = e1 in e2,m) ⇓ v2

(e1,m) ⇓ Exn(i)

(let x = e1 in e2,m) ⇓ Exn(i)

Recursive Identifiers

m(f) = RecV arV al(g, x, e,m′)

(f,m) ⇓ 〈x→ e, {g → RecV arV al(g, x, e,m′)}+m′〉

Declaration Rules
Expression as a Declaration

(e,m) ⇓ v

(e;; , m) ⇓ ((None , v),m)

Let Declaration

(e,m) ⇓ v ∀i. v 6= Exn(i)

(let x = e , m) ⇓ ((Some x, v), {x→ v}+m)

(e,m) ⇓ Exn(i)

(let x = e , m) ⇓ ((None , Exn(i)),m)

Recursive Declarations

(let rec f x = e , m) ⇓ ((Some f,RecV arV al(f, x, e,m)), {f → RecV arV al(f, x, e,m)}+m)

6 Problems
14. (20 pts)

Update your implementation to incorporate exceptions in the evaluator. Follow the rules given above.

13

15. Explicit exceptions (5 pts)

Extend eval exp (exp, m) to handle explicit exception raising.

(e,m) ⇓ n

(raise e,m) ⇓ Exn(n)

(e,m) ⇓ Exn(i)

(raise e,m) ⇓ Exn(i)

A sample test case.

eval_exp(RaiseExp (ConstExp (IntConst 1)),[]);;
- : Common.value = Exn 1

In the PicoML environment,

> raise 1;;

result:
_ = (Exn 1)

16. Implicit exceptions (4 pts)

Modify binOpApply and monOpApply to return an exception if an unexpected error occurs. In such case,
Exn(0) should be returned. Below are the cases you need to cover:

– An attempt to divide by zero (Both integer and real division).

– An attempt to get the head of an empty list.

– An attempt to get the tail of an empty list.

A sample test case:

eval_dec (Anon
(BinOpAppExp(IntDivOp, ConstExp (IntConst 4), ConstExp (IntConst 0))), []);;

- : (string option * Common.value) * Common.memory =
((None, Exn 0), [])

In the PicoML interpreter:

> 4/0;;

result:
val _ = (Exn 0)

17. Handle expressions (10 pts)

Extend eval exp (exp, m) to handle try-with expressions.

(e,m) ⇓ v v 6= Exn(j)

((try e with n1 -> e1 | . . . | np -> ep),m) ⇓ v

(e,m) ⇓ Exn(j) ∀k ≤ p.(nk 6= j and nk 6=)

((try e with n1 -> e1 | . . . | np -> ep),m) ⇓ Exn(j)

14

(e,m) ⇓ Exn(j) (ei,m) ⇓ v (ni = j or ni =) ∀k < i.(nk 6= j and nk 6=)

((try e with n1 -> e1 | . . . | np -> ep),m) ⇓ v

In PicoML environment,

> try 4 / 0 with 0 -> 9999;;

result:
_ = 9999

Final Remark: Please add numerous test cases to the test suite. Try to cover obscure cases.

15

	Change Log
	Overview
	Types
	Compiling, etc...
	Given Files
	Running PicoML

	Problems
	Problems

