
ML2 – Patterns of Recursion, Higher-order
Functions

CS 421 – Fall 2017
Revision 1.1

Assigned September 14, 2017
Due September 20, 2017 – September 22, 2017
Extension None past the allowed lab sign-up time

1 Change Log
1.2 In Problem 17, even count tr step had its arguments in the wrong order.

1.1 Problem 20 uses fold left, nit fold right as originally stated. Also I took away the answer to Problem
20, sift rec : (’a -> bool) -> ’a -> ’a list * ’a list -> ’a list * ’a list
since you will not have this in the CBTF.

1.0 Initial Release.

2 Objectives and Background
The purpose of this ML is to help the student master:

• forward recursion and tail recursion

• higher-order functions

Another purpose of MPs and MLs in general is to provide a framework to study for the exam. Several of the
questions on the exam will appear similar to the MP and ML problems. By the time of the exam, your goal is to be
able to solve any of the following problems with pen and paper in less than 2 minutes.

3 Done in Computer-Based Testing Facility
You are asked to sign up for a time next week to go to the CBTF, where you will be given a random portion (less
than 25%) of this assignment to complete for your grade for the assignment. We recommend that you do the whole
assignment beforehand to be comfortable with the problems, so you will be able to do the problems efficiently when
you go in. To help yourself in that, please read the Guide for Doing MPs at the bottom of the mps webpage for the
course.

Be aware that if we have difficulties with the CBTF, this assignment will revert to an MP and will be turned in, in
full, in the same manner as MPs.

When working in the CBTF, or on EWS, you will need to use the current version of OCaml, version 4.05. To do
so, you will probably need to execute

module load ocaml
ocaml -version

to make sure you are using the correct version.

1

4 Instructions
The problems below have sample executions that suggest how to write answers. Students have to use the same function
name, but the name of the parameters that follow the function name need not be duplicated. That is, the students are
free to choose different names for the arguments to the functions from the ones given in the example execution. We
also will use let rec to begin the definition of some of the functions that are allowed to use recursion. You are not
required to start your code with let rec. Similarly, if you are not prohibited from using explicit recursion in a given
problem, you may change any function defintion from starting with just let to starting with let rec.

For all these problems, you are allowed to write your own auxiliary functions, either internally to the function being
defined or externally as separate functions. In fact, you will find it helpful to do so on several problems. All helper
functions must satisfy any coding restrictions (such as being in tail recursive form, or not using explicit recursion) as
the main function being defined for the problem must satisfy.

Here is a list of the strict requirements for the assignment:

• The function name must be the same as the one provided.

• The type of parameters must be the same as the parameters shown in sample execution.

• Students must comply with any special restrictions for each problem. Some of the problems require that the
solution should be in forward-recursive form or tail-recursive form, while others ask students to supply non-
recursive arguments to higher-order functions in place of recursion, or to directly use higher-order functions in
place of recursion.

Note: All library functions are off limits for all problems in this assignment, except those that are specifically men-
tioned as required/allowed. For purposes of this assignment, @ is treated as a library function and is not to be used.

5 Problems

Patterns of Recursion
Forward Recursion

For the problems in this section, you must use forward recursion.

1. (3 pts) Write a function even count fr : int list -> int such that it returns the number of even in-
tegers found in the input list. The function is required to use (only) forward recursion (no other form of recursion).
You may not use any library functions or problems later in this set.

let rec even_count_fr l = ... ;;
val even_count_fr : int list -> int = <fun>
even_count_fr [1;2;3];;
- : int = 1

2. (3 pts) Write a function pair sums : (int * int) list -> int list that takes a list of pairs of
integers and returns a list of the sums of those pairs in the same order. The function is required to use (only)
forward recursion (no other form of recursion). You may not use any library functions.

let rec pair_sums l = ...;
val pair_sums : (int * int) list -> int list = <fun>
pair_sums [(1,6);(3,1);(3,2)];;
- : int list = [7; 4; 5]

2

3. (3 pts) Write a function remove even : int list -> int list that returns a list in the same order as
the input list, but with all the even numbers removed. The function is required to use (only) forward recursion (no
other form of recursion). You may use mod for testing whether an integer is even. You may not use any library
functions.

let rec remove_even list = ... ;;
val remove_even : int list -> int list = <fun>
remove_even [1; 4; 3; 7; 2; 8];;
- : int list = [1; 3; 7]

4. (3 pts) Write a function sift : (’a -> bool) -> ’a list -> ’a list * ’a list such that
sift p l returns a pair of lists, the first containing all the elements of l for which p returns true, and the
second containing all those for which p returns false. The lists should be in the same order as in the input list.
The function is required to use (only) forward recursion (no other form of recursion). You may not use any library
functions.

let rec sift p l = ... ;;
val sift : (’a -> bool) -> ’a list -> ’a list * ’a list = <fun>
sift (fun x -> x mod 2 = 0) [-3; 5; 2; -6];;
- : int list * int list = ([2; -6], [-3; 5])

5. (5 pts) Write a function apply even odd : ’a list -> (’a -> ’b) -> (’a -> ’b) -> ’b
list such that apply even odd [x0; x1; x2; x3; ...] f g returns a list [f x0; g x1; f
x2; g x3; ...]. The function is required to use (only) forward recursion (no other form of recursion). You
may not use any library functions.

let rec apply_even_odd l f g = ...;;
val apply_even_odd : ’a list -> (’a -> ’b) -> (’a -> ’b) -> ’b list = <fun>
apply_even_odd [1;2;3] (fun x -> x+1) (fun x -> x - 1);;
- : int list = [2; 1; 4];;

6. (5 pts) Run-length encoding (RLE) is a data compression technique in which maximal (non-empty) consecutive oc-
currences of a value are replaced by a pair consisting of the value and a counter showing how many times the value
was repeated in that consecutive sequence. For example, RLE would encode the list [1;1;1;2;2;2;3;1;1;1]
as: [(1,3);(2,3);(3,1);(1;3)]. Write a function rle : ’a list -> (’a * int) list that
takes a list and encodes it using the RLE technique. The function is required to use (only) forward recursion (no
other form of recursion). You may not use any library functions.

let rec rle lst = ... ;;
val rle : ’a list -> (’a * int) list = <fun>
rle [1;1;1;2;2;2;3;1;1;1];;
- : (int * int) list = [(1, 3); (2, 3); (3, 1); (1, 3)]

3

Tail Recursion

For the problems in this section, you must use tail recursion.

7. (3 pts) Write a function even count tr : int list -> int such that it returns the number of even
integers found in the input list. The function is required to use (only) tail recursion (no other form of recursion).
You may not use any library functions or earlier problems in this set. You may use mod.

let rec even_count_tr l = ... ;;
val even_count_tr : int list -> int = <fun>
even_count_tr [1;2;3];;
- : int = 1

8. (3 pts) Write a function count element : ’a list -> ’a -> int such that count element l m
returns the number of elements in the input list l that are equal to m. The function is required to use (only) tail
recursion (no other form of recursion). You may not use any library functions.

let rec count_element l m = ... ;;
val count_element : ’a list -> ’a -> int = <fun>
count_element [0;1;2;4;2;5;4;2] 2;;
- : int = 3

9. (3 pts) Write a function all nonneg : int list -> bool that returns whether every element in the
input list is greater than or equal to 0. The function is required to use (only) tail recursion (no other form of
recursion). You may not use any library functions.

let rec all_nonneg list = ... ;;
val all_nonneg : int list -> bool = <fun>
all_nonneg [4; 7; -3; 5];;
- : bool = false

10. (3 pts) Write a function split sum : int list -> (int -> bool) -> int * int such that it
returns a pair of integers. The first integer in the pair is the sum of all elements in the input list l where the input
function f returns true. The second is the sum of all remaining elements for which f returns false. The function is
required to use (only) tail recursion (no other form of recursion). You may not use any library functions.

let rec split_sum l f = ...;;
val split_sum : int list -> (int -> bool) -> int * int = <fun>
split_sum [1;2;3] (fun x -> x>1);;
- : int * int = (5, 1)

11. (5 pts) Write a function max index : ’a list -> int list that, given an input list, returns a list of
all indices of the elements with the maximum value. The function returns a list of indices in descending order.
Note that the index of the first element is 0. The function is required to use (only) tail recursion (no other form of
recursion). You may not use any library functions.

let rec max_index = ...;;
val max_index : ’a list -> int list = <fun>
max_index [1;2;1];;
- : int list = [1]

4

12. (5 pts) Write a function concat : string -> string list -> string such that concat s l
creates a string consisting of the strings in the list l concatenated together, with the first string s inserted between.
If the list is empty, you should return the empty string (""). If the list is a singleton, you should return just the
single string in that list. The function is required to use (only) tail recursion (no other form of recursion). You may
not use any library functions.

let rec concat s list = ... ;;
val concat : string -> string list -> string = <fun>
concat " * " ["3"; "6"; "2"];;
- : string = "3 * 6 * 2"

Higher-order Functions
For the problems in this section, you must not use recursion.

13. (3 pts) Write a value even count fr base : int and a function
even count fr rec : int -> int -> int such that
(fun l -> List.fold right even count fr rec l even count fr base) computes the same
function as even count fr in Problem 1. There should be no use of recursion in the solution to this problem.

let even_count_fr_base = ... ;;
val even_count_fr_base : int = ...
let even_count_fr_rec x rec_val = ... ;;
val even_count_fr_rec : int -> int -> int = <fun>
(fun l -> List.fold_right even_count_fr_rec l even_count_fr_base)

[1; 2; 3];;
- : int = 1

14. (3 pts) Write a function pair sums map arg : (int * int) -> int such that
List.map pair sums map arg computes the same results as pair map defined in Problem 2. There should
be no use of recursion in the solution to this problem.

let pair_sums_map_arg p = ...;
val pair_sums_map_arg : int * int -> int = <fun>
List.map pair_sums_map_arg [(1,6);(3,1);(3,2)];;
- : int list = [7;4;5]

15. (3 pts) Write a value remove even base and function remove even rec : int -> int list ->
int list such that (fun list -> List.fold right remove even rec list remove even base)
computes the same results as remove even of Problem 3. There should be no use of recursion or library func-
tions in defining remove even rec.

let remove_even_base = ... ;;
val remove_even_base : ...
let remove_even_rec n r = ... ;;
val remove_even_rec : int -> int list -> int list = <fun>
(fun list -> List.fold_right remove_even_rec list remove_even_base)
[1; 4; 3; 7; 2; 8];;

- : int list = [1; 3; 7]

5

16. (3 pts) Write a value sift base and function sift rec : (’a -> bool) -> ’a -> ’a list *
’a list -> ’a list * ’a list such that (fun p -> fun list -> List.fold right (sift rec
p) list sift base) computes the same results as sift of Problem 4. There should be no use of recursion
or library functions in defining sift rec.

let sift_base = ... ;;
val sift_base : ...
let sift_rec p x (tl, fl) = ... ;;
val sift_rec : (’a -> bool) -> ’a -> ’a list * ’a list -> ’a list * ’a list =
<fun>

(fun p -> fun list -> List.fold_right (sift_rec p) list sift_base)
(fun x -> x mod 2 = 0)
[-3; 5; 2; -6];;

- : int list * int list = ([2; -6], [-3; 5])

17. (3 pts) Write a value even count tr start : int and a function
even count tr step : int -> int -> int such that
(List.fold left even count tr step even count tr start) computes the same function as
even count tr in Problem 7. There should be no use of recursion in the solution to this problem.

let even_count_tr_start = ... ;;
val even_count_tr_start : int = ...
let even_count_tr_step rec_val x = ... ;;
val even_count_tr_step : int -> int -> int = <fun>
List.fold_left even_count_tr_step even_count_tr_start [1; 2; 3];;
- : int = 1

18. (3 pts) Write a value count element start : int and function
count element step : ’a -> int -> ’a -> int such that
(fun l -> fun m -> List.fold left (count element step m) count element start l)
computes the same results as count element defined in Problem 8. There should be no use of recursion or li-
brary functions in the solution to this problem.

let count_element_start = ...;;
val count_element_start : int = ...
let count_element_step = ...;;
val count_element_step : ’a -> int -> ’a -> int = <fun>
(fun l -> fun m -> List.fold_left

(count_element_step m)
count_element_start l)

[0;1;2;4;2;5;4;2] 2;;
- : int = 3

19. (3 pts) Write a value all nonneg start and function all nonneg step : bool -> int -> bool
such that List.fold left all nonneg step all nonneg start computes the same results as all nonneg
of Problem 9. There should be no use of recursion or library functions in defining all nonneg step.

let all_nonneg_start = ...
let all_nonneg_step r x = ... ;;

6

val all_nonneg_step : bool -> int -> bool = <fun>
List.fold_left all_nonneg_step all_nonneg_start [4; 7; -3; 5];;
- : bool = false

20. (3 pts) Write a value split sum start : int * int and function split sum step : (int ->
bool) -> int * int -> int -> int * int such that (fun l -> fun f -> List.fold left
(split sum step f) split sum start l) computes the same solution as split sum defined in Prob-
lem 10. There should be no use of recursion or library functions in the solution to this problem.

let split_sum_start = ...;;
val split_sum_start : int * int = ...
let split_sub_step = ...;;
val split_sum_step : (int -> bool) -> int * int -> int -> int * int = <fun>
(fun l -> fun f -> List.fold_left (split_sum_step f) split_sum_start l)
[1;2;3] (fun x -> x>1);;

- : int * int = (5, 1)

21. (5 pts) Write a function app all with : (’a -> ’b -> ’c) list -> ’a -> ’b list -> ’c
list list that takes a list of functions, a single first argument, and a list of second arguments and returns a list
of list of results from consecutively applying the functions to all arguments after applying the single argument to
each function first. The functions should be applied in the order they appear in the list and in the order in which
the arguments appear in the second list. Each list in the result corresponds to a list of applications of a function
on the single argument and then the given argument from the second list. There should be no use of recursion or
library functions except List.map in the solution to this problem

let app_all_with fs b l = ...;
val app_all_with : (’a -> ’b -> ’c) list -> ’a -> ’b list -> ’c list list = <fun>
app_all_with [(fun x y -> x*y); (fun x y -> x+y)] 10 [-1;0;1];;
- : int list list = [[-10; 0; 10]; [9; 10; 11]]

22. (5 pts) Write a value exists between start : bool and a function exists between step: int
-> int -> bool -> int -> bool such that (fun m -> fun n -> fun l -> List.fold left
(exists between step m n) exists between start l) m n l returns true if there is an element
x of l such the m ≤ x ≤ n. There should be no use of recursion or library functions in the solution to this problem.

let exists_between_start = ...;;
val exists_between_start : bool = ...
let exists_between_step m n b x = ...;;
val exists_between_step : ’a -> ’a -> bool -> ’a -> bool = <fun>
(fun m -> fun n -> fun l -> List.fold_left

(exists_between_step m n) exists_between_start l)
5 10 [1; 20; 7; 9];;

- : bool = true

7

Extra Credit
23. (5 pts) Write functions rev append base : ’a -> ’a and rev append rec : ’a -> (’a list

-> ’b) -> ’a list -> ’b such that applying (fun fl -> List.fold right rev append rec
fl rev append base) to two lists reverses the first list onto the front of the second. The definitions of
rev append base and rev append rec may not use library functions or recursion.

let rev_append_base = ... ;;
val rev_append_base : ’a -> ’a = <fun>
let rev_append_rec = ... ;;
val rev_append_rec : ’a -> (’a list -> ’b) -> ’a list -> ’b = <fun>
(fun fl -> List.fold_right rev_append_rec fl rev_append_base) [1; 6; 9] [7; 2];;
- : int list = [9; 6; 1; 7; 2]

8

