Programming Languages and
Compilers (CS 421)

»

~
Elsa L Gunter
2112 SC, UIluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/28/17 1

i Lambda Calculus - Motivation

= Aim is to capture the essence of
functions, function applications, and
evaluation

= A-calculus is a theory of computation

= “The Lambda Calculus: Its Syntax and
Semantics”. H. P. Barendregt. North
Holland, 1984

11/28/17 2

i Lambda Calculus - Motivation

» All sequential programs may be viewed
as functions from input (initial state and
input values) to output (resulting state
and output values).

= A-calculus is a mathematical formalism
of functions and functional
computations

= Two flavors: typed and untyped

11/28/17 3

i Untyped A-Calculus

= Only three kinds of
expressions:

«Variables: x, y, z, w, ...

= Abstraction: A x. e
(Function creation, think fun x -> €)

= Application: e, e,

11/28/17 4

i Untyped A-Calculus Grammar

= Formal BNF Grammar:
= <expression> ::= <variable>
| <abstraction>
| <application>
| (<expression>)
= <abstraction>
::= A<variable>.<expression>
= <application>
= <expression> <expression>

11/28/17 5

i Untyped A-Calculus Terminology

= Occurrence: a location of a subterm in a
term

= Variable binding: A x. e is a binding of x in e

= Bound occurrence: all occurrences of x in
AX. e

= Free occurrence: one that is not bound

= Scope of binding: in A x. e, all occurrences in
e)not in a subterm of the form A x. &’ (same
X

= Free variables: all variables having free
occurrences in a term

11/28/17 6

i Example

= Label occurrences and scope:

(AX.YyAY. Yy (MX. XY) X)X
12 34 56789

11/28/17 7

i Example

= Label occurrences and scope:

[] fre free
()\x.yxy./\y(XX/.\xy)X)i
12 34 56789

11/28/17 8

i Untyped A-Calculus

= How do you compute with the
A\-calculus?
= Roughly speaking, by substitution:

s (AX. &) e, =*e [e,/X]

= * Modulo all kinds of subtleties to avoid
free variable capture

11/28/17 9

‘ Transition Semantics for A-Calculus

E->E"’
EE -->E"F
= Application (version 1 - Lazy Evaluation)
(Mx.E) E --> HE /X]
= Application (version 2 - Eager Evaluation)
E -->E"’
(AXx.E)E' -->(0x.E)E"’

(Mx.E)V--> V/X]

V - variable or abstraction (value)

11/28/17 10

!-’ How Powerful is the Untyped \-Calculus?

= The untyped A-calculus is Turing
Complete
= Can express any sequential computation
= Problems:

= How to express basic data: booleans,
integers, etc?
= How to express recursion?

= Constants, if_then_else, etc, are
conveniences; can be added as syntactic
sugar

11/28/17 11

ﬁyped vs Untyped A-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT
Turing Complete (no recursion)

11/28/17 12

i Uses of A-Calculus

= Typed and untyped A-calculus used for
theoretical study of sequential
programming languages
= Sequential programming languages are
essentially the A-calculus, extended with
predefined constructs, constants, types,
and syntactic sugar
= Ocaml is close to the A-Calculus:
fun x -> exp --> A X. exp
letx = e, ine,-> (A X. &)e,

11/28/17 13

i o Conversion

= o-conversion:

A X. exp —-a--> A Y. (exp [y/x])
= Provided that

1.y is not free in exp

2. No free occurrence of x in exp
becomes bound in exp when
replaced by y

11/28/17 14

i*a Conversion Non-Examples

1. Error: y is not free in termsecond

A X. xy>s<> AY.YY
2. Error: free occurrence of x becomes
bound in wrong way when replaced by y
A X. 7»y.xy><> AY.AY.VY
exp exply/x]
But Ax. (Ay.y)Xx=—-a—->Ay.(AY.Y)Y
AndAy. (LY. Y)Yy o> AX. (LY. y)X

11/28/17 15

ﬁongruence

= Let ~ be a relation on lambda
terms. ~ is a congruence if

= it is an equivalence relation

= If e, ~ e, then
= (eg) ~ (eegy)and (ee) ~ (e, €)
s AX. € ~AX €

11/28/17 16

ia Equivalence

= o equivalence is the smallest
congruence containing o
conversion

= One usually treats a-equivalent
terms as equal - i.e. use o
equivalence classes of terms

11/28/17 17

Example

Show: A X. (AY. Yy X)X ~va~ Ay, (AX.XY)Y

s AX. (AY.YX)X--0—->Az.(AY.YZ)Z SO
AX.(AY.yX)X~a~ Nz, (AYy.yZ)z

s (MY. Y 2) o> (AX.XZ) SO
(My.yz) ~a~ (AX.XZ) SO
AMz.(hy.yz)z~o~v Az (MX.X2Z)Z

s AZ.(AX.XZ)Z-a-> LY. (AX.XY)Y SO
AMz.(AX.XZ)z~a~v hY. (A X XY)Y

s AX. (AY.y X)X ~oa~v Ay, (A X XY)Y

11/28/17 18

i Substitution

= Defined on a-equivalence classes of
terms

= P [N/ x] means replace every free
occurrence of x in P by N
= P called redex; N called residue

= Provided that no variable free in P
becomes bound in P [N / x]

= Rename bound variables in P to avoid
capturing free variables of N

11/28/17 19

i Substitution

s X[N/x]=N
sY[N/x]=yify=x
= (e,) [N/x]=((e,[N/x])(e;[N/x]))
s(AX.€)[N/x]=(AX.€)
=(Ay.€)IN/x]=ry.(e[N/x])
provided y = x and y not free in N
= Rename y in redex if necessary

11/28/17 20

#Example

(Ay.yz)[(Ax.xy)/z] =7
= Problems?
= Z in redex in scope of y binding
= y free in the residue
s (AYy.y2)[(MX. XY) /[Z] 0>
Aww2)[(AX.XYy)/ z] =
AW. W (AX XY)

11/28/17 21

:.‘ Example

= Only replace free occurrences

s(Ay.yz(Az.2)) [((Mx.X) [/ z] =
AY.Y(AX.X) (Mz. 2)

Not
AY. Yy (AX.xX) (A z. (MX. X))

11/28/17 22

i{% reduction

= pRule: (AX.P)N--p-->P[N/x]

= Essence of computation in the lambda
calculus

= Usually defined on a-equivalence
classes of terms

11/28/17 23

#Example

s(AzZ.(AX.xy)z) (LY. Y 2)
B> (A X. xy) (MY Yy 2Z)
B> (hy.yz)y--p->yz

s (A X. XX) (A X. XX)
--B--> (A X. X X) (A X. X X)
-=B--> (A X. X X) (A X. X X) ==B--> ...

11/28/17 24

i a B Equivalence

= o 3 equivalence is the smallest
congruence containing o. equivalence
and f reduction

= A term is in normal form if no subterm
is a equivalent to a term that can be p
reduced

= Hard fact (Church-Rosser): if e; and e,
are af-equivalent and both are normal
forms, then they are o equivalent

11/28/17

25

i Order of Evaluation

= Not all terms reduce to normal forms

= Not all reduction strategies will produce
a normal form if one exists

11/28/17 26

i Lazy evaluation:

= Always reduce the left-most application
in a top-most series of applications (i.e.
Do not perform reduction inside an
abstraction)

= Stop when term is not an application, or
left-most application is not an
application of an abstraction to a term

11/28/17

27

i Example 1

s(Az.(AX. X)) (LY. yy) (hy.yy)
= Lazy evaluation:

= Reduce the left-most application:

s(MzZ.(AX. X)) (MY YY) (hy.yy)
--g--> (A X. X)

11/28/17 28

i Eager evaluation

= (Eagerly) reduce left of top application
to an abstraction

= Then (eagerly) reduce argument
= Then p-reduce the application

11/28/17

29

i Example 1

=Mz (XXM Y- YY) My yy)
= Eager evaluation:

= Reduce the rator of the top-most application to
an abstraction: Done.

= Reduce the argument:

s (A (X XAy YY) ey yy))
—p-> (A Z. (M X XA Y. YY) Ay yy))
—p-> (A zZ. A X XA Y- YY) (L y.yy))..

11/28/17 30

i Example 2

s (AX. XX)((MY. YY) (Az 2)
= Lazy evaluation:

Ax.x X)(Ay.yYy) Az 2)) --p-->

11/28/17 31

i Example 2

s (AX XX)((NY. YY) (Az 2)
= Lazy evaluation:

O x4 (. y y) (2. 2) —-p-->

11/28/17 32

i Example 2

s (AX. XX)((AMY. YY) (M2 2)
= Lazy evaluation:

A XX XA Y. YY) (A z 2)) --p-->
((vy.y y)Oz2)[((hy.y ¥) (rz 7))

11/28/17 33

i Example 2

s (AX XX)((MY. YY) (Mz 2)
= Lazy evaluation:

(A x.x x)((hy.yy) (nz 2))--p-->
((vy.y y)z2o)|(hy.y V) (rz2)

11/28/17 34

i Example 2

= (A X XX) (Y. YY) (hz 2)
= Lazy evaluation:

AX.x X)(AyY. YY) Az 2)) --p-->
((vy.yYM)z2)((Ay.y V) (rz2)

11/28/17 35

i Example 2

= (A XXXy YY) (hz 2))

= Lazy evaluation:

(A x.x x)(Ay.yy) Az 2)) --B-->
(YD) v z.2) ((Ly.y y) (A2 2))
B> (A z. z)[(h z. Z)((hy.y y) (hz 2))

11/28/17 36

i Example 2

s (AX. XX) (MY YY) (A z 2)

= Lazy evaluation:

(Ax.x x)(Ay.yy) (Mz. 2)) B>

(Ay.y y)(rz.2))((Ay.y v) Xz 2)
B> z.2) bz)y y ¥) (b2 2)

11/28/17 37

i Example 2

s (AX. XX)((NY. YY) (M z 2)

= Lazy evaluation:

AX.x xX)(My.yy) (Mz. 2) —-p—>
((Ay.yy)(rz.2)((Ay.y v)(hz 2)
B> ((rz.[z)) Az) (A y.y v) (A2 2))

11/28/17 38

i Example 2

e (AX. XX)((NY. YY) (A z 2)

= Lazy evaluation:

(Ax.x x)(hy.yy) (Az 2)) --p-->
((Ay.y y)(rz.2)) (Ay.y ¥) (hz 2))

~-p--> (L z.[2) ez)y y ¥) (2. 2))
--p--> ((hy.y y) (L2 2)

11/28/17 39

i Example 2

s (AX XX)((MY. YY) (Mz 2)
= Lazy evaluation:

Ax.x X)(Ay.yYy) Az 2)--p-->
(Ay.y y)rz2)((Ay.y ¥v) Az 2)

“p->((hz.z)(hz.))((Ay.y ¥V) (rz 2)
-p->(hz.[Z) (Ay.y y) (Az 2)) --B-->
Ay.y y)(rz2)

11/28/17 40

i Example 2

= (A X XXMy YY) (M2 2))
= Lazy evaluation:

(Ax.x x)(Ay.yy) (hz 2)) -p-->
CK% Y-y Y) Az 2)) (Ay.y y) (hz 2))

) (2.2 (Ay.y V) (M2 2)
~p-S0z 2Ny y v) (h 2. 2) >

(hy.y y)(hz.2)|

11/28/17 41

i Example 2

= (A X XXMy YY) (M2 2))
= Lazy evaluation:

(Ax.x x)(Ay.yy) (\z. 2)) —-p-—>
((I(k Y-y Y) (A z.2) ((hy.y y) (A2 2)

*"" --gl-((x 2.2) (hz. D)) (hy.y ¥) (h2.2))
--f-- ((vy.y y) (\z 2) —-p-->

Ay.y Y)(Mz.2)vp~ Az Z

11/28/17 42

i Example 2

s(AX.XX)((AY. VYY) (Mz 2)

= Eager evaluation:

(A% x X)[((Ay. YY) (A 2z 2))==p-->
(Ax. x X)|[((Az.2) (\z 2))=p-->

(A x. x x)[(n z. 2)|--p-->
MNz.2)(Lz.2Z2) B> Nz.2Z

11/28/17 43

i Untyped A-Calculus

= Only three kinds of expressions:
= Variables: x, y, z, w, ...
= Abstraction: A x. e
(Function creation)
= Application: e, e,

11/28/17 44

i How to Represent (Free) Data Structures
(First Pass - Enumeration Types)

= Suppose T is a type with n constructors:
C,,...,C, (no arguments)

= Represent each term as an abstraction:

mlet G — AX . Xy X

= Think: you give me what to return in
each case (think match statement) and
I'll return the case for the /th
constructor

11/28/17 45

i How to Represent Booleans

= bool = True | False
= True = A X AXp. X3 =, AX.AY. X
= False = A X AX5. X =, AX.AY.Y
= Notation
= Will write
A Xy o Xy € fOr A Xqe o AX, €
e;e,..e, for(...(e;e,)...e,)

11/28/17 46

i Functions over Enumeration Types

= Write a “match” function
= match e with C; -> x,

| ...
| Cn -> X,
= AX{ ... X, € €X..X,

= Think: give me what to do in each case and
give me a case, and I’ Il apply that case

11/28/17 47

i Functions over Enumeration Types

= typet =C/|...|C,

= match e with C, -> x4
[...

| Cn => Xn

= matcht = A Xy ... X, €. € X;y...X,,

= € = expression (single constructor)
X; is returned if e = G

11/28/17 48

i match for Booleans

= bool = True | False
mTrue = A X;Xp. Xy =, AXY.X
= False = A Xy X, X, =, AXY.Y

a

= match,,, = ?

11/28/17 49

i match for Booleans

= bool = True | False
mTrue = A X;Xy. Xy =, AXY. X
= False = A Xy X. X; =, AXY.Y
= match,,,; = A X; X; €. € Xy X,

=, AXyb.bxy

11/28/17 50

‘ How to Write Functions over Booleans

= if b then x, else x, —
= if_then_else b x; X, = b x; %,
= if_then_else=AbXx; X, .b X X

11/28/17 51

‘ How to Write Functions over Booleans

= Alternately:

= if b then x, else x, =
match b with True -> x, | False -> x, —
matchpy, X; X; b =
(AXy X b.bXy X)Xy X b=bXx; %,

= if_then_else
= A b X; X,. (matchy,, X; X, b)
=AbX X MXy X3 b DXy X)Xy X, b
=AbX; X5. b XX,

11/28/17 52

’ Example:

not b

= match b with True -> False | False -> True
— (match,,,) False True b

=(AX; X% b.bx;x)(Axy.y)(AXxy.X)b
=b(AXYy.y)AXYy.X)

snot=Ab.b(AXxYy.y)(AXYy.X)
= Try and, or

11/28/17 53

‘ and or

11/28/17 54

i How to Represent (Free) Data Structures
(Second Pass - Union Types)

= Suppose T is a type with n constructors:
typer =Gty byl 1[Gty o b,
= Represent each term as an abstraction:

u CI—>7\. tl.l tl], Xl Xn . XI tll o tl],
= Think: you need to give each constructor

its arguments fisrt

11/28/17 55

i How to Represent Pairs

= Pair has one constructor (comma) that takes
two arguments

= type (a,ﬁ)pair= (I)OL[3
m(@a,b)->Ax.xab
=(_,)->Arabx.xab

11/28/17 56

i Functions over Union Types

= Write a “match” function

= match e with C;y; ... Y1 -> f1 Y1 oo Yo
| ...

| C.n Y1 Ymn -> fn Y1 Ymn

» matcht — Af; ... f e ef..f,

= Think: give me a function for each case and
give me a case, and I’ Il apply that case to
the appropriate fucntion with the data in that
case

11/28/17 57

i Functions over Pairs

= match,, _Afp.pf

= fst p = match p with (x,y) -> x
= fst — A p. match,,;, (A X Y. X)
=(Afp.pH)(AXY.X) =Aap.p(Axy.X)

msnd =Ap.p(AXYy.Yy)

11/28/17 58

i How to Represent (Free) Data Structures
(Third Pass - Recursive Types)

= Suppose T is a type with n constructors:
typet =Gty .. byl |Gty
Suppose t;,: t (ie. is recursive)

= In place of a value £, have afunction to compute
the recursive value ry X, ... X,

tnm,

8 Gl Mty = AXg o X X By (T Xq e X)) o G

G— by Lty Xy X0 X bp o (Fp X o Xg) oo G

11/28/17 59

i How to Represent Natural Numbers

=nat=Sucnat| 0
aSuc =rnfx f(nfx)
aSucn=xrfx f(nfx)
=0 =AfX X

= Such representation called
Church Numerals

11/28/17 60

i Some Church Numerals

sSucO0=(nfx.f(nfx)) (nfx. x)-->
AMx (O Fx x)fx)-—->
M f(MX X)X)-->Afx fXx

Apply a function to its argument once

11/28/17 61

i Some Church Numerals

= Suc(Suc 0) = (A nfx. f(nfx))(Suc0)-->
(Anfx.f(nfx)) (Afx. fx)->
AMx f(MLfx fXx)fx))-—->
AMX F((MX fX)X)-—->Afx f(fx)
Apply a function twice

In general_n =Afx. f(..(fx)..)withn
applications of f

11/28/17 62

‘ Primitive Recursive Functions

= Write a “fold” function
= foldf; ... f, = matche
With C; ¥y oo Yo => F1 Y1 o Vi
[...
| Giyy o By oYin => fryg o (fold fy o frg) e
[...
| Cn Y1 Yo => f:n Y1+ Ymn

s foldr — Af, ... f e ef..f,

= Match in non recursive case a degenerate version
of fold

11/28/17 63

i Primitive Recursion over Nat

= fold f z n=
= match nwith 0 -> z
. | Suc m -> f (fold f z m)

afold=Afzn. nfz

= is_zero n = fold (A r. False) True n
= (A fx. f"x) (A r. False) True

= ((\r. False) ") True

= =if n = 0 then True else False

11/28/17 64

!-’ Adding Church Numerals

N=afx.f'x and m=Afx. fmx

sn+m=Axfx fOmx
=Afx.fn(fmx)=xrfx.nf(mfx)

st=anmfx.nf(mfx)

= Subtraction is harder

11/28/17 65

i Multiplying Church Numerals

3I

=Afx.f"x and m=Afx.fmx
nxm=Afx. (f"*mMx =Afx. (fFM)x
= Afx.n(mf)x

¥=Anmfx. n(mf)x

11/28/17 66

’ Predecessor

= let pred_aux n =

match n with 0 -> (0,0)

| Suc m

-> (Suc(fst(pred_aux m)), fst(pred_aux m)
= fold (A r. (Suc(fstr), fstr)) (0,0) n

= pred = A n. snd (pred_aux n) n =
A n. snd (fold (A r.(Suc(fst r), fst r)) (0,0) n)

11/28/17 67

i Recursion

= Want a A-term Y such that for all term
R we have

= YR=R(YR)
= Y needs to have replication to
“remember” a copy of R

Y =2y, (AX y(x X)) (A X y(XXx))
YR = (A X. R(X X)) (AX. R(X X))

= R ((A x. R(x X)) (A x. R(x X)))
= Notice: Requires lazy evaluation

11/28/17 68

i Factorial

s letF=Afn.ifn=0thenlelsen*f(n-1)
YF3=F(YF)3

=if3=0then1lelse 3 * ((YF)(3-1))
=3*YF)2=3*(FYF)?2)
=3*(f2=0then1lelse2* (YF)(2-1))
=3*Q*(YFA)=3*R2*(FYF)1) =
=3*2*1*(if 0 =0then 1 else 0*(Y F)(0 -1))
=3%2*¥1*1=6

11/28/17 69

‘ Y in OCaml

#letrecyf=f(yf);;
valy : ('a->'a) -> 'a = <fun>
let mk_fact =
funfn->ifn=0then 1else n*f(n-1);;
val mk_fact : (int -> int) -> int -> int = <fun>
y mk_fact;;
Stack overflow during evaluation (looping
recursion?).

11/28/17 70

i Eager Eval Y in Ocaml

#letrecyfx=f(yf)x;;

valy:((la->'b)->'a->'b)->"'a->'b =
<fun>

y mk_fact;;

- rint -> int = <fun>

#y mk_fact 5;;

-1int =120

= Use recursion to get recursion

11/28/17 71

i Some Other Combinators

= For your general exposure

sl =AX.X

s K=AX.AY. X

s Kk =AX.AY. Yy

s S=AX.AY.AZ.XZ(Y2)

11/28/17 72

