
11/6/14 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/6/14 2

LR Parsing Tables

n  Build a pair of tables, Action and Goto, from
the grammar
n  This is the hardest part, we omit here
n  Rows labeled by states
n  For Action, columns labeled by terminals

and “end-of-tokens” marker
n  (more generally strings of terminals of fixed

length)
n  For Goto, columns labeled by non-

terminals

11/6/14 3

Action and Goto Tables

n  Given a state and the next input, Action
table says either
n  shift and go to state n, or
n  reduce by production k (explained in a

bit)
n  accept or error

n  Given a state and a non-terminal, Goto table
says
n  go to state m

11/6/14 4

LR(i) Parsing Algorithm

n  Based on push-down automata

n  Uses states and transitions (as recorded
in Action and Goto tables)

n  Uses a stack containing states,
terminals and non-terminals

11/6/14 5

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-
of-tokens” symbol

1.  Start in state 1 with an empty stack

2.  Push state(1) onto stack

3.  Look at next i tokens from token stream
(toks) (don’t remove yet)

4.  If top symbol on stack is state(n), look
up action in Action table at (n, toks)

11/6/14 6

LR(i) Parsing Algorithm

5. If action = shift m,
a)  Remove the top token from token

stream and push it onto the stack
b)  Push state(m) onto stack
c)  Go to step 3

11/6/14 7

LR(i) Parsing Algorithm

6. If action = reduce k where production k is
E ::= u

a)  Remove 2 * length(u) symbols from
stack (u and all the interleaved states)

b)  If new top symbol on stack is state(m),
look up new state p in Goto(m,E)

c)  Push E onto the stack, then push
state(p) onto the stack

d)  Go to step 3

11/6/14 8

LR(i) Parsing Algorithm

7. If action = accept
n Stop parsing, return success

8. If action = error,
n Stop parsing, return failure

11/6/14 9

Adding Synthesized Attributes

n  Add to each reduce a rule for calculating
the new synthesized attribute from the
component attributes

n  Add to each non-terminal pushed onto the
stack, the attribute calculated for it

n  When performing a reduce,
n  gather the recorded attributes from each non-

terminal popped from stack
n  Compute new attribute for non-terminal pushed

onto stack

11/6/14 10

Shift-Reduce Conflicts

n  Problem: can’t decide whether the
action for a state and input character
should be shift or reduce

n  Caused by ambiguity in grammar

n  Usually caused by lack of associativity
or precedence information in grammar

11/6/14 11

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

11/6/14 12

Example - cont

n  Problem: shift or reduce?

n  You can shift-shift-reduce-reduce or
reduce-shift-shift-reduce

n  Shift first - right associative
n  Reduce first- left associative

11/6/14 13

Reduce - Reduce Conflicts

n  Problem: can’t decide between two
different rules to reduce by

n  Again caused by ambiguity in grammar
n  Symptom: RHS of one production

suffix of another
n  Requires examining grammar and

rewriting it
n  Harder to solve than shift-reduce errors

11/6/14 14

Example

n  S ::= A | aB A ::= abc B ::= bc

  abc shift
 a  bc shift
 ab  c shift
 abc 
n  Problem: reduce by B ::= bc then by

S ::= aB, or by A::= abc then S::A?

11/6/14 15

Semantics

n  Expresses the meaning of syntax
n  Static semantics

n  Meaning based only on the form of the
expression without executing it

n  Usually restricted to type checking / type
inference

11/6/14 16

Dynamic semantics

n  Method of describing meaning of
executing a program

n  Several different types:
n Operational Semantics
n Axiomatic Semantics
n Denotational Semantics

11/6/14 17

Dynamic Semantics

n Different languages better suited
to different types of semantics

n Different types of semantics
serve different purposes

11/6/14 18

Operational Semantics

n  Start with a simple notion of machine

n  Describe how to execute (implement)
programs of language on virtual machine, by
describing how to execute each program
statement (ie, following the structure of the
program)

n  Meaning of program is how its execution
changes the state of the machine

n  Useful as basis for implementations

11/6/14 19

Axiomatic Semantics

n  Also called Floyd-Hoare Logic
n  Based on formal logic (first order

predicate calculus)
n  Axiomatic Semantics is a logical system

built from axioms and inference rules
n  Mainly suited to simple imperative

programming languages

11/6/14 20

Axiomatic Semantics

n  Used to formally prove a property
(post-condition) of the state (the
values of the program variables) after
the execution of program, assuming
another property (pre-condition) of the
state before execution

n  Written :
{Precondition} Program {Postcondition}

n  Source of idea of loop invariant

11/6/14 21

Denotational Semantics

n  Construct a function M assigning a
mathematical meaning to each program
construct

n  Lambda calculus often used as the range
of the meaning function

n  Meaning function is compositional:
meaning of construct built from meaning
of parts

n  Useful for proving properties of programs

11/6/14 22

Natural Semantics

n  Aka Structural Operational Semantics, aka
“Big Step Semantics”

n  Provide value for a program by rules and
derivations, similar to type derivations

n  Rule conclusions look like
(C, m) ⇓ m’

or
(E, m) ⇓ v

11/6/14 23

Simple Imperative Programming Language

n  I ∈ Identifiers
n  N ∈ Numerals
n  B ::= true | false | B & B | B or B | not B

| E < E | E = E
n  E::= N | I | E + E | E * E | E - E | - E
n  C::= skip | C;C | I ::= E

| if B then C else C fi | while B do C od

11/6/14 24

Natural Semantics of Atomic Expressions

n  Identifiers: (I,m) ⇓ m(I)
n Numerals are values: (N,m) ⇓ N
n Booleans: (true,m) ⇓ true
 (false ,m) ⇓ false

11/6/14 25

Booleans:

(B, m) ⇓ false (B, m) ⇓ true (B’, m) ⇓ b
(B & B’, m) ⇓ false (B & B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false (B’, m) ⇓ b
(B or B’, m) ⇓ true (B or B’, m) ⇓ b

(B, m) ⇓ true (B, m) ⇓ false

(not B, m) ⇓ false (not B, m) ⇓ true

11/6/14 26

Relations

(E, m) ⇓ U (E’, m) ⇓ V U ~ V = b
(E ~ E’, m) ⇓ b

n  By U ~ V = b, we mean does (the meaning

of) the relation ~ hold on the meaning of U
and V

n  May be specified by a mathematical
expression/equation or rules matching U and
V

11/6/14 27

Arithmetic Expressions

(E, m) ⇓ U (E’, m) ⇓ V U op V = N

(E op E’, m) ⇓ N
where N is the specified value for U op V

11/6/14 28

Commands

Skip: (skip, m) ⇓ m

Assignment: (E,m) ⇓ V

 (I::=E,m) ⇓ m[I <-- V]

Sequencing: (C,m) ⇓ m’ (C’,m’) ⇓ m’’
 (C;C’, m) ⇓ m’’

11/6/14 29

If Then Else Command

(B,m) ⇓ true (C,m) ⇓ m’

(if B then C else C’ fi, m) ⇓ m’

(B,m) ⇓ false (C’,m) ⇓ m’
(if B then C else C’ fi, m) ⇓ m’

11/6/14 30

While Command

(B,m) ⇓ false
(while B do C od, m) ⇓ m

(B,m)⇓true (C,m)⇓m’ (while B do C od,
m’)⇓m’’

(while B do C od, m) ⇓ m’’

11/6/14 31

Example: If Then Else Rule

 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 (2+3, {x->7})⇓5
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓true ⇓{x- >7, y->5}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

 {x -> 7}) ⇓ ?

11/6/14 32

Example: If Then Else Rule

 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 (2+3, {x->7})⇓5
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓? ⇓{x- >7, y->5}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 33

Example: Arith Relation

 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 ? > ? = ? (2+3, {x->7})⇓5
(x,{x->7})⇓? (5,{x->7})⇓? (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓? ⇓{x- >7, y->5}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 34

Example: Identifier(s)

 (2,{x->7})⇓2 (3,{x->7}) ⇓3
 7 > 5 = true (2+3, {x->7})⇓5

(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}
 (x > 5, {x -> 7})⇓? ⇓{x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 35

Example: Arith Relation

 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 7 > 5 = true (2+3, {x->7})⇓5
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓true ⇓{x- >7, y->5}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 36

Example: If Then Else Rule

 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 7 > 5 = true (2+3, {x->7})⇓5
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓true ⇓ ? .
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 37

Example: Assignment

 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 7 > 5 = true (2+3, {x->7})⇓?
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}
 (x > 5, {x -> 7})⇓true ⇓ ? {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 38

Example: Arith Op

 ? + ? = ?
 (2,{x->7})⇓? (3,{x->7}) ⇓?

 7 > 5 = true (2+3, {x->7})⇓?
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓true ⇓? .
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 39

Example: Numerals

 2 + 3 = 5
 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 7 > 5 = true (2+3, {x->7})⇓?
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓true ⇓ ?{x->7, y->5}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 40

Example: Arith Op

 2 + 3 = 5
 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 7 > 5 = true (2+3, {x->7})⇓5
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓true ⇓? {x->7, y->5}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

 {x -> 7}) ⇓ ? {x->7, y->5}

11/6/14 41

Example: Assignment

 2 + 3 = 5
 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 7 > 5 = true (2+3, {x->7})⇓5
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})⇓true ⇓ {x->7, y->5}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
 {x -> 7}) ⇓? {x->7, y->5}

11/6/14 42

Example: If Then Else Rule

 2 + 3 = 5
 (2,{x->7})⇓2 (3,{x->7}) ⇓3

 7 > 5 = true (2+3, {x->7})⇓5
(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}

 (x > 5, {x -> 7})⇓true ⇓ {x->7, y->5}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

 {x -> 7}) ⇓ {x->7, y->5}

11/6/14 43

Let in Command

(E,m) ⇓v (C,m[I<-v]) ⇓ m’
(let I = E in C, m) ⇓ m’ ’

Where m’’ (y) = m’ (y) for y≠ I and
m’’ (I) = m (I) if m(I) is defined,
and m’’ (I) is undefined otherwise

11/6/14 44

Example

 (x,{x->5}) ⇓ 5 (3,{x->5}) ⇓ 3
 (x+3,{x->5}) ⇓ 8

(5,{x->17}) ⇓ 5 (x:=x+3,{x->5}) ⇓ {x->8}
 (let x = 5 in (x:=x+3), {x -> 17}) ⇓ ?

11/6/14 45

Example

 (x,{x->5}) ⇓ 5 (3,{x->5}) ⇓ 3
 (x+3,{x->5}) ⇓ 8

(5,{x->17}) ⇓ 5 (x:=x+3,{x->5}) ⇓ {x->8}
 (let x = 5 in (x:=x+3), {x -> 17}) ⇓ {x->17}

11/6/14 46

Comment

n  Simple Imperative Programming Language
introduces variables implicitly through
assignment

n  The let-in command introduces scoped
variables explictly

n  Clash of constructs apparent in awkward
semantics

11/6/14 47

Interpretation Versus Compilation

n  A compiler from language L1 to language
L2 is a program that takes an L1 program
and for each piece of code in L1 generates a
piece of code in L2 of same meaning

n  An interpreter of L1 in L2 is an L2 program
that executes the meaning of a given L1
program

n  Compiler would examine the body of a loop
once; an interpreter would examine it every
time the loop was executed

11/6/14 48

Interpreter

n  An Interpreter represents the operational
semantics of a language L1 (source
language) in the language of implementation
L2 (target language)

n  Built incrementally
n  Start with literals
n  Variables
n  Primitive operations
n  Evaluation of expressions
n  Evaluation of commands/declarations

11/6/14 49

Interpreter

n  Takes abstract syntax trees as input
n  In simple cases could be just strings

n  One procedure for each syntactic category
(nonterminal)
n  eg one for expressions, another for commands

n  If Natural semantics used, tells how to
compute final value from code

n  If Transition semantics used, tells how to
compute next “state”
n  To get final value, put in a loop

11/6/14 50

Natural Semantics Example

n  compute_exp (Var(v), m) = look_up v m
n  compute_exp (Int(n), _) = Num (n)
n  …
n  compute_com(IfExp(b,c1,c2),m) =
 if compute_exp (b,m) = Bool(true)
 then compute_com (c1,m)
 else compute_com (c2,m)

11/6/14 51

Natural Semantics Example

n  compute_com(While(b,c), m) =
 if compute_exp (b,m) = Bool(false)
 then m
 else compute_com
 (While(b,c), compute_com(c,m))

n  May fail to terminate - exceed stack limits
n  Returns no useful information then

