
10/20/16 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/20/16 2

Example Regular Expressions

n  (0∨1)*1
n  The set of all strings of 0’s and 1’s ending in 1,

{1, 01, 11,…}
n  a*b(a*)

n  The set of all strings of a’s and b’s with exactly
one b

n  ((01) ∨(10))*
n  You tell me

n  Regular expressions (equivalently, regular
grammars) important for lexing, breaking
strings into recognized words

10/20/16 3

Regular Grammars

n  Subclass of BNF (covered in detail sool)
n  Only rules of form

<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=ε

n  Defines same class of languages as regular
expressions

n  Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

n  Close connection to nondeterministic finite state
automata – nonterminals = states; rule = edge ~ ~

10/20/16 4

Example

n  Regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

n  Generates even length strings where every
initial substring of even length has same
number of 0’s as 1’s

10/20/16 5

Example: Lexing

n  Regular expressions good for describing
lexemes (words) in a programming language
n  Identifier = (a ∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z) (a
∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z ∨ 0 ∨ 1 ∨ … ∨ 9)*

n  Digit = (0 ∨ 1 ∨ … ∨ 9)
n  Number = 0 ∨ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)* ∨

~ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)*
n  Keywords: if = if, while = while,…

10/20/16 6

Implementing Regular Expressions

n  Regular expressions reasonable way to
generate strings in language

n  Not so good for recognizing when a
string is in language

n  Problems with Regular Expressions
n  which option to choose,
n  how many repetitions to make

n  Answer: finite state automata
n  Should have seen in CS374

10/20/16 7

Lexing

n  Different syntactic categories of “words”:
tokens

Example:
n  Convert sequence of characters into

sequence of strings, integers, and floating
point numbers.

n  "asd 123 jkl 3.14" will become:
 [String "asd"; Int 123; String "jkl"; Float
3.14]

10/20/16 8

Lex, ocamllex

n  Could write the reg exp, then translate to
DFA by hand
n  A lot of work

n  Better: Write program to take reg exp as
input and automatically generates automata

n  Lex is such a program
n  ocamllex version for ocaml

10/20/16 9

How to do it

n To use regular expressions to parse
our input we need:
n Some way to identify the input string
— call it a lexing buffer

n Set of regular expressions,
n Corresponding set of actions to take
when they are matched.

10/20/16 10

How to do it

n  The lexer will take the regular expressions
and generate a state
machine.

n  The state machine will take our lexing buffer
and apply the transitions...

n  If we reach an accepting state from which
we can go no further, the machine will
perform the appropriate action.

10/20/16 11

Mechanics

n  Put table of reg exp and corresponding
actions (written in ocaml) into a file
<filename>.mll

n  Call
ocamllex <filename>.mll

n  Produces Ocaml code for a lexical analyzer in
file <filename>.ml

10/20/16 12

Sample Input

rule main = parse
 ['0'-'9']+ { print_string "Int\n"}
 | ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
 | ['a'-'z']+ { print_string "String\n"}
 | _ { main lexbuf }
 {
 let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.\n";
 main newlexbuf
}

10/20/16 13

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
 regexp { action }
 | ...
 | regexp { action }
and entrypoint [arg1... argn] =

parse ...and ...
{ trailer }

10/20/16 14

Ocamllex Input

n  header and trailer contain arbitrary
ocaml code put at top an bottom of
<filename>.ml

n  let ident = regexp ... Introduces ident
for use in later regular expressions

10/20/16 15

Ocamllex Input

n  <filename>.ml contains one lexing
function per entrypoint
n  Name of function is name given for

entrypoint
n  Each entry point becomes an Ocaml

function that takes n+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

n  arg1... argn are for use in action

10/20/16 16

Ocamllex Regular Expression

n  Single quoted characters for letters:
‘a’

n  _: (underscore) matches any letter
n  Eof: special “end_of_file” marker
n  Concatenation same as usual
n  “string”: concatenation of sequence

of characters
n  e1 | e2 : choice - what was e1 ∨ e2

10/20/16 17

Ocamllex Regular Expression

n  [c1 - c2]: choice of any character
between first and second inclusive, as
determined by character codes

n  [^c1 - c2]: choice of any character NOT
in set

n  e*: same as before
n  e+: same as e e*
n  e?: option - was e1 ∨ ε

10/20/16 18

Ocamllex Regular Expression

n  e1 # e2: the characters in e1 but not in
e2; e1 and e2 must describe just sets of
characters

n  ident: abbreviation for earlier reg exp in
let ident = regexp

n  e1 as id: binds the result of e1 to id to
be used in the associated action

10/20/16 19

Ocamllex Manual

n  More details can be found at

http://caml.inria.fr/pub/docs/manual-ocaml/

lexyacc.html

10/20/16 20

Example : test.mll

{ type result = Int of int | Float of float |
String of string }

let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +

10/20/16 21

Example : test.mll

rule main = parse
 (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 { let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.";
 print_newline ();
 main newlexbuf }

10/20/16 22

Example

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->

result = <fun>
Ready to lex.
hi there 234 5.2
- : result = String "hi"
What happened to the rest?!?

10/20/16 23

Example

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

Your Turn

n Work on ML4
n Add a few keywords
n  Implement booleans and unit
n  Implement Ints and Floats
n  Implement identifiers

10/20/16 24

10/20/16 25

Problem

n  How to get lexer to look at more than the
first token at one time?

n  One Answer: action tells it to -- recursive
calls

n  Side Benefit: can add “state” into lexing
n  Note: already used this with the _ case
n  Mainly useful when you can make your lexer

be your parser
n  OCamlyacc parser needs tokens one at a time

10/20/16 26

Example

rule main = parse
 (digits) '.' digits as f { Float

(float_of_string f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main lexbuf}
 | eof { [] }
 | _ { main lexbuf }

10/20/16 27

Example Results

Ready to lex.
hi there 234 5.2
- : result list = [String "hi"; String "there"; Int

234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

10/20/16 28

Dealing with comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse
 (digits) '.' digits as f { Float (float_of_string

f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main lexbuf}

10/20/16 29

Dealing with comments

 | open_comment { comment lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment = parse
 close_comment { main lexbuf }
 | _ { comment lexbuf }

10/20/16 30

Dealing with nested comments

rule main = parse …
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1)

lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

10/20/16 31

Dealing with nested comments

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) ::

main lexbuf}
 | digits as n { Int (int_of_string n) :: main

lexbuf }
 | letters as s { String s :: main lexbuf}
 | open_comment { (comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }

10/20/16 32

Dealing with nested comments

and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

10/20/16 33

Types of Formal Language Descriptions

n  Regular expressions, regular grammars
n  Context-free grammars, BNF grammars,

syntax diagrams
n  Finite state automata

n  Whole family more of grammars and
automata – covered in automata theory

10/20/16 34

Sample Grammar

n  Language: Parenthesized sums of 0’s and
1’s

n  <Sum> ::= 0
n  <Sum >::= 1
n  <Sum> ::= <Sum> + <Sum>
n  <Sum> ::= (<Sum>)

10/20/16 35

BNF Grammars

n  Start with a set of characters, a,b,c,…
n  We call these terminals

n  Add a set of different characters, X,Y,Z,
…
n  We call these nonterminals

n  One special nonterminal S called start
symbol

10/20/16 36

BNF Grammars

n  BNF rules (aka productions) have form
 X ::= y
 where X is any nonterminal and y is a string

of terminals and nonterminals
n  BNF grammar is a set of BNF rules such that

every nonterminal appears on the left of
some rule

10/20/16 37

Sample Grammar

n  Terminals: 0 1 + ()
n  Nonterminals: <Sum>
n  Start symbol = <Sum>

n  <Sum> ::= 0
n  <Sum >::= 1
n  <Sum> ::= <Sum> + <Sum>
n  <Sum> ::= (<Sum>)
n  Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)

10/20/16 38

BNF Deriviations

n  Given rules
X::= yZw and Z::=v

we may replace Z by v to say
X => yZw => yvw

n  Sequence of such replacements called
derivation

n  Derivation called right-most if always
replace the right-most non-terminal

10/20/16 39

BNF Derivations

n  Start with the start symbol:

<Sum> =>

10/20/16 40

BNF Derivations

n  Pick a non-terminal

<Sum> =>

10/20/16 41

n  Pick a rule and substitute:
n  <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

10/20/16 42

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

10/20/16 43

n  Pick a rule and substitute:
n  <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

10/20/16 44

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

10/20/16 45

n  Pick a rule and substitute:
n  <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

10/20/16 46

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

10/20/16 47

n  Pick a rule and substitute:
n  <Sum >::= 1

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

10/20/16 48

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

10/20/16 49

n  Pick a rule and substitute:
n  <Sum >::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

10/20/16 50

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

10/20/16 51

n  Pick a rule and substitute
n  <Sum> ::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) 0
 => (0 + 1) + 0

BNF Derivations

10/20/16 52

n  (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0
 => (0 + 1) + 0

BNF Derivations

10/20/16 53

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>

10/20/16 54

BNF Semantics

n  The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

10/20/16 55

Regular Grammars

n  Subclass of BNF
n  Only rules of form

<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=ε

n  Defines same class of languages as regular
expressions

n  Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

n  Close connection to nondeterministic finite state
automata – nonterminals = states; rule = edge ~ ~

10/20/16 56

Example

n  Regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

n  Generates even length strings where every
initial substring of even length has same
number of 0’s as 1’s

10/20/16 57

Extended BNF Grammars

n  Alternatives: allow rules of from X::=y|z
n  Abbreviates X::= y, X::= z

n  Options: X::=y[v]z
n  Abbreviates X::=yvz, X::=yz

n  Repetition: X::=y{v}*z
n  Can be eliminated by adding new

nonterminal V and rules X::=yz, X::=yVz,
V::=v, V::=vV

10/20/16 58

n  Graphical representation of derivation
n  Each node labeled with either non-terminal

or terminal
n  If node is labeled with a terminal, then it is a

leaf (no sub-trees)
n  If node is labeled with a non-terminal, then

it has one branch for each character in the
right-hand side of rule used to substitute for
it

Parse Trees

10/20/16 59

Example

n  Consider grammar:
 <exp> ::= <factor>
 | <factor> + <factor>
 <factor> ::= <bin>
 | <bin> * <exp>
 <bin> ::= 0 | 1

n  Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

10/20/16 60

Example cont.

n  1 * 1 + 0: <exp>

<exp> is the start symbol for this parse

tree

10/20/16 61

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

Use rule: <exp> ::= <factor>

10/20/16 62

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

10/20/16 63

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

Use rules: <bin> ::= 1 and
 <exp> ::= <factor> +

<factor>

10/20/16 64

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

Use rule: <factor> ::= <bin>

10/20/16 65

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0
Use rules: <bin> ::= 1 | 0

10/20/16 66

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0
Fringe of tree is string generated by grammar

10/20/16 67

Your Turn: 1 * 0 + 0 * 1

10/20/16 68

Parse Tree Data Structures

n  Parse trees may be represented by OCaml
datatypes

n  One datatype for each nonterminal
n  One constructor for each rule
n  Defined as mutually recursive collection of

datatype declarations

10/20/16 69

Example

n  Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

n  type exp = Factor2Exp of factor
 | Plus of factor * factor
 and factor = Bin2Factor of bin
 | Mult of bin * exp
 and bin = Zero | One

10/20/16 70

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

10/20/16 71

Example cont.

n  Can be represented as

Factor2Exp
(Mult(One,
 Plus(Bin2Factor One,
 Bin2Factor Zero)))

10/20/16 72

Ambiguous Grammars and Languages

n  A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

n  If all BNF’s for a language are ambiguous
then the language is inherently ambiguous

10/20/16 73

Example: Ambiguous Grammar

n  0 + 1 + 0
 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

10/20/16 74

Example

n  What is the result for:
3 + 4 * 5 + 6

10/20/16 75

Example

n  What is the result for:
3 + 4 * 5 + 6

n  Possible answers:
n  41 = ((3 + 4) * 5) + 6
n  47 = 3 + (4 * (5 + 6))
n  29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
n  77 = (3 + 4) * (5 + 6)

10/20/16 76

Example

n  What is the value of:
7 – 5 – 2

10/20/16 77

Example

n  What is the value of:
7 – 5 – 2

n  Possible answers:
n  In Pascal, C++, SML assoc. left
 7 – 5 – 2 = (7 – 5) – 2 = 0
n  In APL, associate to right
 7 – 5 – 2 = 7 – (5 – 2) = 4

10/20/16 78

Two Major Sources of Ambiguity

n  Lack of determination of operator
precedence

n  Lack of determination of operator
assoicativity

n  Not the only sources of ambiguity

