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Example Regular Expressions 

n  (0∨1)*1 
n  The set of all strings of 0’s and 1’s ending in 1,   

{1, 01, 11,…} 
n  a*b(a*) 

n  The set of all strings of a’s and b’s with exactly 
one b 

n  ((01) ∨(10))* 
n  You tell me 

n  Regular expressions (equivalently, regular 
grammars) important for lexing, breaking 
strings into recognized words 
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Regular Grammars 

n  Subclass of BNF (covered in detail sool) 
n  Only rules of form 

<nonterminal>::=<terminal><nonterminal> or 
<nonterminal>::=<terminal> or 
<nonterminal>::=ε 

n  Defines same class of languages as regular 
expressions 

n  Important for writing lexers (programs that 
convert strings of characters into strings of 
tokens) 

n  Close connection to nondeterministic finite state 
automata – nonterminals = states; rule = edge ~ ~
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Example 

n  Regular grammar:  
<Balanced> ::= ε 
<Balanced> ::=  0<OneAndMore> 
<Balanced> ::= 1<ZeroAndMore> 
<OneAndMore> ::= 1<Balanced> 
<ZeroAndMore> ::= 0<Balanced> 

n  Generates even length strings where every 
initial substring of even length has same 
number of 0’s as 1’s 
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Example: Lexing 

n  Regular expressions good for describing 
lexemes (words) in a programming language 
n  Identifier = (a ∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z) (a 
∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z ∨ 0 ∨ 1 ∨ … ∨ 9)* 

n  Digit = (0 ∨ 1 ∨ … ∨ 9) 
n  Number = 0 ∨ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)* ∨         

~ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)* 
n  Keywords: if = if, while = while,… 
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Implementing Regular Expressions 

n  Regular expressions reasonable way to 
generate strings in language 

n  Not so good for recognizing when a 
string is in language 

n  Problems with Regular Expressions 
n  which option to choose, 
n   how many repetitions to make 

n  Answer: finite state automata 
n  Should have seen in CS374 
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Lexing 

n  Different syntactic categories of “words”: 
tokens 

Example: 
n  Convert sequence of characters into 

sequence of strings, integers, and floating 
point numbers. 

n  "asd 123 jkl 3.14" will become: 
 [String "asd"; Int 123; String "jkl"; Float 
3.14] 
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Lex, ocamllex 

n  Could write the reg exp, then translate to 
DFA by hand 
n  A lot of work  

n  Better: Write program to take reg exp as 
input and automatically generates automata  

n  Lex is such a program 
n  ocamllex version for ocaml 
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How to do it 

n To use regular expressions to parse 
our input we need: 
n Some way to identify the input string 
— call it a lexing buffer  

n Set of regular expressions, 
n Corresponding set of actions to take 
when they are matched. 
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How to do it 

n  The lexer will take the regular expressions 
and generate a state 
machine.  

n  The state machine will take our lexing buffer 
and apply the transitions...  

n  If we reach an accepting state from which 
we can go no further, the machine will 
perform the appropriate action. 
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Mechanics 

n  Put table of reg exp and corresponding 
actions (written in ocaml) into a file 
<filename>.mll 

n  Call 
ocamllex <filename>.mll 

n  Produces Ocaml code for a lexical analyzer in 
file  <filename>.ml 
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Sample Input 

rule main = parse 
 ['0'-'9']+ { print_string "Int\n"} 
 | ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"} 
 | ['a'-'z']+ { print_string "String\n"} 
 | _ { main lexbuf } 
 { 
 let newlexbuf = (Lexing.from_channel stdin) in 
 print_string "Ready to lex.\n"; 
 main newlexbuf 
}  
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General Input 

{ header } 
let ident = regexp ... 
rule entrypoint [arg1... argn] = parse     
       regexp { action }  
    | ...  
    | regexp { action } 
and entrypoint [arg1... argn] =  

parse ...and ... 
{ trailer } 
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Ocamllex Input 

n  header and trailer contain arbitrary 
ocaml code put at top an bottom of 
<filename>.ml 

n  let ident = regexp ...  Introduces ident 
for use in later regular expressions 
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Ocamllex Input 

n  <filename>.ml contains one lexing 
function per entrypoint 
n  Name of function is name given for 

entrypoint 
n  Each entry point becomes an Ocaml 

function that takes n+1 arguments, the 
extra implicit last argument being of type 
Lexing.lexbuf 

n  arg1... argn are for use in action 
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Ocamllex Regular Expression 

n  Single quoted characters for letters: 
‘a’ 

n  _: (underscore) matches any letter 
n  Eof: special “end_of_file” marker 
n  Concatenation same as usual 
n  “string”: concatenation of sequence 

of characters 
n  e1 | e2 : choice - what was e1 ∨ e2 
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Ocamllex Regular Expression 

n  [c1 - c2]: choice of any character 
between first and second inclusive, as 
determined by character codes 

n  [^c1 - c2]: choice of any character NOT 
in set 

n  e*: same as before 
n  e+: same as e e* 
n  e?: option - was e1 ∨ ε 

10/20/16 18 

Ocamllex Regular Expression 

n  e1 # e2: the characters in e1 but not in 
e2; e1 and e2 must describe just sets of 
characters 

n  ident: abbreviation for earlier reg exp in 
let ident = regexp  

n   e1 as id: binds the result of e1 to id to 
be used in the associated action 
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Ocamllex Manual 

n  More details can be found at 
 
http://caml.inria.fr/pub/docs/manual-ocaml/

lexyacc.html 
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Example : test.mll 

{ type result = Int of int | Float of float | 
String of string } 

let digit = ['0'-'9'] 
let digits = digit + 
let lower_case = ['a'-'z'] 
let upper_case = ['A'-'Z'] 
let letter = upper_case | lower_case 
let letters = letter + 
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Example : test.mll 

rule main = parse 
   (digits)'.'digits as f  { Float (float_of_string f) } 
 | digits as n              { Int (int_of_string n) } 
 | letters as s             { String s} 
 | _ { main lexbuf } 
 { let newlexbuf = (Lexing.from_channel stdin) in 
 print_string "Ready to lex."; 
 print_newline (); 
 main newlexbuf  } 
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Example 

# #use "test.ml";; 
… 
val main : Lexing.lexbuf -> result = <fun> 
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> 

result = <fun> 
Ready to lex. 
hi there 234 5.2 
- : result = String "hi" 
What happened to the rest?!? 
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Example 

# let b = Lexing.from_channel stdin;; 
# main b;; 
hi 673 there 
- : result = String "hi" 
# main b;; 
- : result = Int 673 
# main b;; 
- : result = String "there" 

Your Turn 

n Work on ML4   
n Add a few keywords 
n  Implement booleans and unit 
n  Implement Ints and Floats 
n  Implement identifiers 

10/20/16 24 



10/20/16 25 

Problem 

n  How to get lexer to look at more than the 
first token at one time? 

n  One Answer: action tells it to -- recursive 
calls 

n  Side Benefit: can add “state” into lexing 
n  Note: already used this with the _ case 
n  Mainly useful when you can make your lexer 

be your parser 
n  OCamlyacc parser needs tokens one at a time 
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Example 

rule main = parse 
   (digits) '.' digits as f { Float 

(float_of_string f) :: main lexbuf} 
 | digits as n          { Int (int_of_string n) :: 

main lexbuf } 
 | letters as s         { String s :: main lexbuf} 
 | eof                     { [] } 
 | _                        { main lexbuf } 
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Example Results 

Ready to lex. 
hi there 234 5.2 
- : result list = [String "hi"; String "there"; Int 

234; Float 5.2] 
#  
 
Used Ctrl-d to send the end-of-file signal 
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Dealing with comments 

First Attempt 
let open_comment = "(*" 
let close_comment = "*)" 
rule main = parse 
   (digits) '.' digits as f { Float (float_of_string 

f) :: main lexbuf} 
 | digits as n          { Int (int_of_string n) :: 

main lexbuf } 
 | letters as s         { String s :: main lexbuf} 
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Dealing with comments 

 | open_comment         { comment  lexbuf} 
 | eof                  { [] } 
 | _ { main lexbuf } 
and comment = parse 
   close_comment       { main lexbuf } 
 | _                   { comment lexbuf } 
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Dealing with nested comments 

rule main = parse … 
 | open_comment         { comment 1 lexbuf} 
 | eof                  { [] } 
 | _ { main lexbuf } 
and comment depth = parse 
   open_comment        { comment (depth+1) 

lexbuf } 
 | close_comment       { if depth = 1 
                          then main lexbuf 
                         else comment (depth - 1) lexbuf } 
 | _                   { comment depth lexbuf } 
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Dealing with nested comments 

rule main = parse 
   (digits) '.' digits as f { Float (float_of_string f) :: 

main lexbuf} 
 | digits as n          { Int (int_of_string n) :: main 

lexbuf } 
 | letters as s         { String s :: main lexbuf} 
 | open_comment         { (comment 1 lexbuf} 
 | eof                  { [] } 
 | _ { main lexbuf } 
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Dealing with nested comments 

and comment depth = parse 
   open_comment        { comment (depth+1) lexbuf } 
 | close_comment       { if depth = 1 
                          then main lexbuf 
                         else comment (depth - 1) lexbuf } 
 | _                   { comment depth lexbuf } 
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Types of Formal Language Descriptions 

n  Regular expressions, regular grammars 
n  Context-free grammars, BNF grammars, 

syntax  diagrams 
n  Finite state automata 

n  Whole family more of grammars and 
automata – covered in automata theory 
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Sample Grammar 

n  Language: Parenthesized sums of 0’s and 
1’s 

 

n  <Sum> ::= 0  
n  <Sum >::= 1  
n  <Sum> ::= <Sum> + <Sum> 
n  <Sum> ::= (<Sum>) 
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BNF Grammars 

n  Start with a set of characters,   a,b,c,… 
n  We call these terminals 

n  Add a set of different characters, X,Y,Z,
… 
n  We call these nonterminals 

n  One special nonterminal S called start 
symbol 
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BNF Grammars 

n  BNF rules (aka productions) have form 
         X ::= y 
    where X is any nonterminal and y is a string 

of terminals and nonterminals 
n  BNF grammar is a set of BNF rules such that 

every nonterminal appears on the left of 
some rule 



10/20/16 37 

Sample Grammar 

n  Terminals: 0 1 + ( ) 
n  Nonterminals: <Sum> 
n  Start symbol = <Sum> 

n  <Sum> ::= 0  
n  <Sum >::= 1  
n  <Sum> ::= <Sum> + <Sum> 
n  <Sum> ::= (<Sum>) 
n  Can be abbreviated as 
 <Sum> ::= 0 | 1  
                | <Sum> + <Sum> | (<Sum>) 
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BNF Deriviations 

n  Given rules  
X::= yZw and Z::=v  

we may replace Z by v to say 
X => yZw => yvw  

n  Sequence of such replacements called 
derivation 

n  Derivation called right-most if always 
replace the right-most non-terminal 
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BNF Derivations 

n  Start with the start symbol: 
 
<Sum> => 
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BNF Derivations 

n  Pick a non-terminal 

<Sum> => 
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n  Pick a rule and substitute: 
n  <Sum> ::= <Sum> + <Sum> 

<Sum> => <Sum> + <Sum > 

BNF Derivations 
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n  Pick a non-terminal: 
 
<Sum> => <Sum> + <Sum > 

BNF Derivations 
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n  Pick a rule and substitute: 
n  <Sum> ::= ( <Sum> ) 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 

BNF Derivations 

10/20/16 44 

n  Pick a non-terminal: 
 
<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 

BNF Derivations 
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n  Pick a rule and substitute: 
n  <Sum> ::= <Sum> + <Sum> 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  

BNF Derivations 
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n  Pick a non-terminal: 
 
<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  

BNF Derivations 
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n  Pick a rule and substitute: 
n  <Sum >::= 1 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 

BNF Derivations 
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n  Pick a non-terminal: 
 
<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 

BNF Derivations 
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n  Pick a rule and substitute: 
n  <Sum >::= 0 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 
            => ( <Sum> + 1 ) + 0 

BNF Derivations 
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n  Pick a non-terminal: 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 
            => ( <Sum> + 1 ) + 0 

BNF Derivations 
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n  Pick a rule and substitute 
n  <Sum> ::= 0 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 
            => ( <Sum> + 1 ) 0 
            => ( 0 + 1 ) + 0 

BNF Derivations 
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n  ( 0 + 1 ) + 0  is generated by grammar 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 
            => ( <Sum> + 1 ) + 0 
            => ( 0 + 1 ) + 0 

BNF Derivations 
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<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>) 

<Sum> => 
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BNF Semantics 

n  The meaning of a BNF grammar is the 
set of all strings consisting only of 
terminals that can be derived from the 
Start symbol 
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Regular Grammars 

n  Subclass of BNF 
n  Only rules of form 

<nonterminal>::=<terminal><nonterminal> or 
<nonterminal>::=<terminal> or 
<nonterminal>::=ε 

n  Defines same class of languages as regular 
expressions 

n  Important for writing lexers (programs that 
convert strings of characters into strings of 
tokens) 

n  Close connection to nondeterministic finite state 
automata – nonterminals = states; rule = edge ~ ~
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Example 

n  Regular grammar:  
<Balanced> ::= ε 
<Balanced> ::=  0<OneAndMore> 
<Balanced> ::= 1<ZeroAndMore> 
<OneAndMore> ::= 1<Balanced> 
<ZeroAndMore> ::= 0<Balanced> 

n  Generates even length strings where every 
initial substring of even length has same 
number of 0’s as 1’s 
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Extended BNF Grammars 

n  Alternatives: allow rules of from X::=y|z 
n  Abbreviates  X::= y, X::= z 

n  Options:  X::=y[v]z 
n  Abbreviates X::=yvz, X::=yz 

n  Repetition: X::=y{v}*z 
n  Can be eliminated by adding new 

nonterminal V and rules X::=yz, X::=yVz, 
V::=v, V::=vV 
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n  Graphical representation of derivation 
n  Each node labeled with either non-terminal 

or terminal 
n  If node is labeled with a terminal, then it is a 

leaf (no sub-trees) 
n  If node is labeled with a non-terminal, then 

it has one branch for each character in the 
right-hand side of rule used to substitute for 
it 

Parse Trees 
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Example 

n  Consider grammar: 
 <exp>  ::= <factor> 
               |  <factor> +  <factor> 
 <factor>  ::=  <bin>  
                 |  <bin>  *  <exp> 
 <bin> ::=  0  | 1 

n  Problem: Build parse tree for  1 * 1 + 0 as 
an <exp> 
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Example cont. 

n  1 * 1 + 0:    <exp> 
 
 
<exp> is the start symbol for this parse 

tree 
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Example cont. 

n  1 * 1 + 0:    <exp> 
 

                    <factor> 
 
Use rule: <exp> ::=  <factor> 
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Example cont. 

n  1 * 1 + 0:    <exp> 
 

                    <factor> 
 

           <bin>      *         <exp> 
 
Use rule:  <factor> ::=  <bin> *  <exp> 
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Example cont. 

n  1 * 1 + 0:    <exp> 
 

                    <factor> 
 

           <bin>      *         <exp> 
 

              1         <factor>  +    <factor> 
 
Use rules:  <bin> ::= 1   and 
                  <exp> ::= <factor>  + 

<factor> 
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Example cont. 

n  1 * 1 + 0:    <exp> 
 

                    <factor> 
 

           <bin>      *         <exp> 
 

              1         <factor>  +    <factor> 
 

                           <bin>            <bin> 
 

 
Use rule:  <factor> ::= <bin> 
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Example cont. 

n  1 * 1 + 0:    <exp> 
 

                    <factor> 
 

           <bin>      *         <exp> 
 

              1         <factor>  +    <factor> 
 

                           <bin>            <bin> 
 

                               1                   0 
Use rules:  <bin> ::= 1 | 0 
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Example cont. 

n  1 * 1 + 0:    <exp> 
 

                    <factor> 
 

           <bin>      *         <exp> 
 

              1         <factor>  +    <factor> 
 

                           <bin>            <bin> 
 

                               1                   0 
Fringe of tree is string generated by grammar 
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Your Turn: 1 * 0 + 0 * 1 
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Parse Tree Data Structures 

n  Parse trees may be represented by OCaml 
datatypes 

n  One datatype for each nonterminal 
n  One constructor for each rule 
n  Defined as mutually recursive collection of 

datatype declarations 
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Example 

n  Recall grammar: 
<exp>  ::= <factor>  |  <factor> +  <factor> 
<factor>  ::=  <bin> |  <bin>  *  <exp> 
<bin> ::=  0  | 1 

n  type exp = Factor2Exp of factor 
                   | Plus of factor * factor 
    and factor = Bin2Factor of bin  
                       | Mult of bin * exp 
    and bin = Zero | One 
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Example cont. 

n  1 * 1 + 0:    <exp> 
 

                    <factor> 
 

           <bin>      *         <exp> 
 

              1         <factor>  +    <factor> 
 

                           <bin>            <bin> 
 

                               1                   0 
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Example cont. 

n  Can be represented as 

Factor2Exp 
(Mult(One,   
          Plus(Bin2Factor One, 
                   Bin2Factor Zero))) 
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Ambiguous Grammars and Languages 

n  A BNF grammar is ambiguous if its language 
contains strings for which there is more than 
one parse tree 

n  If all BNF’s for a language are ambiguous 
then the language is inherently ambiguous 
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Example: Ambiguous Grammar 

n  0 + 1 + 0 
                <Sum>                 <Sum> 
 

        <Sum> + <Sum>  <Sum> + <Sum> 
 

<Sum> + <Sum>  0         0   <Sum> + <Sum> 
 

     0             1                            1             0 
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Example 

n  What is the result for: 
3 + 4 * 5 + 6 
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Example 

n  What is the result for: 
3 + 4 * 5 + 6 

n  Possible answers: 
n     41 = ((3 + 4) * 5) + 6 
n     47 = 3 + (4 * (5 + 6)) 
n     29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6) 
n     77 = (3 + 4) * (5 + 6) 
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Example 

n  What is the value of: 
7 – 5 – 2 
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Example 

n  What is the value of: 
7 – 5 – 2 

n  Possible answers: 
n  In Pascal, C++, SML assoc. left 
  7 – 5 – 2 = (7 – 5) – 2 = 0 
n  In APL, associate to right 
  7 – 5 – 2 = 7 – (5 – 2) = 4 
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Two Major Sources of Ambiguity 

n  Lack of determination of operator 
precedence 

n  Lack of determination of operator 
assoicativity 

n  Not the only sources of ambiguity 


