Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/3/17



i Nested Recursive Types

# type 'a labeled_tree =

TreeNode of (‘a * 'a labeled_tree
list);;

type 'a labeled_tree = TreeNode of ('a
* 'a labeled_tree list)

10/3/17



ﬁ Nested Recursive Type Values

# let Itree =
TreeNode(5,
[TreeNode (3, [D;
TreeNode (2, [TreeNode (1, []);
TreeNode (7, [D]);
TreeNode (5, [D]);;

10/3/17



i Nested Recursive Type Values

val ltree : int l[abeled tree =
TreeNode
(5,

[TreeNode (3, []); TreeNode (2,
[TreeNode (1, []); TreeNode (7, []D]);

TreeNode (5, []])

10/3/17



i Nested Recursive Type Values

Ltree = TreeNode(5)
[ | | /

3 + + [ ]
I | |
TreeNode(3) TreeNode(2) TreeNode(5)
I I |
[ ] i =|=—[] [ ]
TreeNode(1) TreeNode(7)

|
[ ] [ ]

10/3/17



i Nested Recursive Type Values

10/3/17



* Mutually Recursive Functions

# let rec flatten_tree labtree =
match labtree with TreeNode (X,treelist)
-> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees
-> flatten_tree labtree
@ flatten_tree_list labtrees:;

10/3/17



i Mutually Recursive Functions

val flatten tree : 'a labeled tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled tree list -> 'a
list = <fun>

# flatten_tree ltree;;
-:intlist =1[5; 3; 2; 1; 7; 5]

= Nested recursive types lead to mutually
recursive functions

10/3/17



i Why Data Types?

= Data types play a key role in:
» Data abstraction in the design of programs
» Type checking in the analysis of programs

« Compile-time code generation in the
translation and execution of programs

« Data layout (how many words; which are data
and which are pointers) dictated by type

10/3/17 9



i Terminology

= Type: A type t defines a set of possible
data values

= E.g. short in Cis {x| 21> -1 = x = -21°}
= A value in this set is said to have type t

= Type system: rules of a language
assigning types to expressions

10/3/17 10



i Types as Specifications

= Types describe properties

= Different type systems describe different
properties, eg

» Data is read-write versus read-only

= Operation has authority to access data

= Data came from “right” source

= Operation might or could not raise an exception

= Common type systems focus on types describing
same data layout and access methods

10/3/17 11



i Sound Type System

= If an expression is assighed type ¢, and it
evaluates to a value v, then vis in the set of
values defined by ¢

= SML, OCAML, Scheme and Ada have sound
type systems

= Most implementations of C and C++ do not

10/3/17 12



i Strongly Typed Language

= When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed

« Eg: 1+ 2.3;;
= Depends on definition of “type error”

10/3/17 13



i Strongly Typed Language

= C++ claimed to be “strongly typed”, but
= Union types allow creating a value at one
type and using it at another
= Type coercions may cause unexpected
(undesirable) effects
= No array bounds check (in fact, no runtime
checks at all)

= SML, OCAML “strongly typed” but still must
do dynamic array bounds checks, runtime
type case analysis, and other checks

10/3/17 14



i Static vs Dynamic Types

. Static type: type assighed to an expression
at compile time

. Dynamic type: type assigned to a storage
location at run time

. Statically typed language: static type
assigned to every expression at compile time

. Dynamically typed language: type of an
expression determined at run time

10/3/17 15



i Type Checking

= When is op(argl,...,argn) allowed?

s [ype checking assures that operations are
applied to the right number of arguments of
the right types

= Right type may mean same type as was
specified, or may mean that there is a
predefined implicit coercion that will be
applied
= Used to resolve overloaded operations

10/3/17 16



i Type Checking

= Type checking may be done statically at
compile time or dynamically at run time

= Dynamically typed (aka untyped)
languages (eg LISP, Prolog) do only
dynamic type checking

= Statically typed languages can do most
type checking statically

10/3/17 17



i Dynamic Type Checking

s Performed at run-time before each
operation is applied

= [ypes of variables and operations left
unspecified until run-time

= Same variable may be used at different
types

10/3/17

18



i Dynamic Type Checking

= Data object must contain type
information

= Errors aren’ t detected until violating
application is executed (maybe years
after the code was written)

10/3/17 19



i Static Type Checking

= Performed after parsing, before code
generation

= Type of every variable and signature of
every operator must be known at
compile time

10/3/17 20



i Static Type Checking

= Can eliminate need to store type
information in data object if no dynamic
type checking is needed

= Catches many programming errors at
earliest point

= Can’ t check types that depend on
dynamically computed values

= Eg: array bounds

10/3/17 21



i Static Type Checking

= Typically places restrictions on
languages
= Garbage collection
= References instead of pointers
= All variables initialized when created

= Variable only used at one type

= Union types allow for work-arounds, but
effectively introduce dynamic type checks

10/3/17

22



i Type Declarations

s [ype declarations: explicit assignment
of types to variables (signatures to
functions) in the code of a program
= Must be checked in a strongly typed

language

= Often not necessary for strong typing or
even static typing (depends on the type
system)

10/3/17 23



i Type Inference

= [ype inference: A program analysis to
assign a type to an expression from the
program context of the expression

= Fully static type inference first introduced
by Robin Miller in ML

= Haskle, OCAML, SML all use type inference

= Records are a problem for type
inference

10/3/17 24



i Format of Type Judgments

s A type judgement has the form
I'|-exp:t
= ' is a typing environment

= Supplies the types of variables (and function
names when function names are not variables)

« 'isasetoftheform{ x:o,...}
= For any x at most one o such that (x: o €T')

= eXp IS a program expression
= T iS a type to be assigned to exp

= |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows™)

10/3/17 25



i Axioms - Constants

I' |- n:int (assuming nis an integer constant)

I" |- true : bool I" |- false : bool
= These rules are true with any typing

environment
= I, n are meta-variables

10/3/17 26



i Axioms — Variables (Monomorphic Rule)

Notation: LetI'(x) = o if x:c&ET
Note: if such o exits, its unique

Variable axiom:

'-x:0 ifI'(xX)=o0

10/3/17 27



i Simple Rules - Arithmetic

Primitive operators ( ® €{ +, -, *, ...}):
C|l-eit;y T|-6m1 (@)t —=1 —1
F " 6’1 @ eZ . T3

Relations ( ~ €{ <, >, =, <=, >=1}):
f-e,:t TI'|-6:7
r " e]_ ~ ez :bOOl

For the moment, think < is int

10/3/17 28



* Example: {x:int} |-x + 2 = 3 :bool

What do we need to show first?

{x:int} |-x + 2 = 3 : bool

10/3/17

29



ﬁ Example: {x:int} |-x + 2 = 3 :bool

What do we need for the left side?

{X:int} [-x+ 2 :int {x:int} |- 3 :intR |
{x:int} |-x + 2 =3 : bool y

10/3/17 30



* Example: {x:int} |-x + 2 = 3 :bool

How to finish?

{x:int} |- x:int {x:int} |- 2:inFA\O
{X:int} [-x+ 2 :int {x:int} |- 3 :int

{x:int} |-x + 2 =3 : bool Re

10/3/17 31



ﬁ Example: {x:int} |-x + 2 = 3 :bool

Complete Proof (type derivation)

Var Const
{x:int} |- x:int {x:int} |- 2:int Const
. . AO — ,
{X:int} [-x+ 2 :int {x:int} |- 3 :int

Rel

{x:int} |-x + 2 = 3 : bool

10/3/17 32



* Simple Rules - Booleans

Connectives
I'|-e :bool T |-e :bool

I'|-e && &, : bool

I'|[-e :bool T |-e :bool

F\ e, || e : bool

10/3/17

33



i Type Variables in Rules

a If then_else rule:
I'|-6 :bool T'|-6 it I'|-€:7
I' |- (if e thene, else e;) : t

= T iS a type variable (meta-variable)
= Can take any type at al

= All instances in a rule application must get
same type

= Then branch, else branch and if _then_else
must all have same type

10/3/17 34



i Function Application

= Application rule:
r"el:ﬂ[;leﬂcz r"EZ:T;l
I'[-(66):T

= If you have a function expression e, of
type t, — 1, applied to an argument
e, of type t,, the resulting expression
e, &, has type T,

10/3/17 35



i Fun Rule

= Rules describe types, but also how the
environment I' may change

= Can only do what rule allows!
= fun rule:
{x:tmy y+rl-e:,
C|-funx->e€:ty =7,

10/3/17 36



* Fun Examples

{y:int}+T|-y+3:int
'|-funy->y+ 3 :int—int

{f :int — bool} + " |-f 2 :: [true] : bool list

I' |- (fun f->f2:: [true])
. (int — bool) — bool list

10/3/17 37



ﬁ (Monomorphic) Let and Let Rec

s let rule:
'[-(letx=eine): T

= let rec rule:
Xt +r|-eitvy Xt} +T|- e

I'|[-(letrecx=¢,ine): T,

10/3/17 38



i Example

= Which rule do we apply?

?

|- (letrecone =1 :: onein
let x = 2 in
funy-> (x::y::one)):int — int list

10/3/17 39



i Example

= Let rec rule: @ {one : int list} |-

© (let x = 2 in

{one : int list} |- funy -> (X ::y::one))
(1 ::0ne):int list : int — int list
|- (letrecone =1 :: onein
let x = 2 in

funy->(x::y::one)):int — int list

10/3/17 40



i Proof of 1

= Which rule?

{one : int list} |- (1 :: one) : int list

10/3/17

41



i Proof of 1

= Application
{one : int list} |- {one : int list} |-

((::) 1): int list— int list one : int list

{one : int list} |- (1 :: one) : int list

10/3/17 42



i Proof of 3

Constants Rule Constants Rule

{one : int list} |- {one : int list} |-
(::) :int = intlist—=intlist 1 :int
{one : intlist} |- ((::) 1) : int list — int list

10/3/17 43



i Proof of 4

= Rule for variables

{one : int list} |- one:int list

10/3/17

44



i Proof of 2

@ {x:int; one : int list} |-

= Constant funy ->
(X 1y i one))
{one : int list} |- 2:int : int — int list

{one : int list} |- (let x = 2 in
funy-> (x::y::one)):int — int list

10/3/17 45



i Proof of 5

?

{x:int; one : int list} |-funy-> (X ::y :: one))
: int — int list

10/3/17

46



i Proof of 5

?

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |-funy-> (X ::y :: one))
: int — int list

10/3/17 47



i Proof of 5

0, @

{y:int; x:int; one:int list}  {y:int; x:int; one:int list}
|- ((::) X):int list— int list |- (y :: one) : int list

{y:int; xiint; one : int list} |- (X iy i one) : int list

{x:int; one : int list} |-funy -> (X :: y :: one))
: int — int list

10/3/17 48



i Proof of 6

Constant Variable

L = ()

: int—int list—int list _{...; xtint;...} [- x:int
{y:int; x:int; one : int list} |- ((::) X)
:int list— int list

10/3/17 49



i Proof of 7

Pf of 6 [y/X] Variable
®
®
®
{y:int; ..} |- ((::)y) {...; one: int list} |-
:int list— int list one: int list

{y:int; x:int; one : int list} |- (y :: one) : int list

10/3/17 50



i Curry - Howard Isomorphism

= Type Systems are logics; logics are type
systems

= [ypes are propositions; propositions are
types

= Terms are proofs; proofs are terms

= Function space arrow corresponds to
implication; application corresponds to
modus ponens

10/3/17

51



ﬁ Curry - Howard Isomorphism

= Modus Ponens
A=B A
B

. Application
r"el:aeﬁ F"EZ:O(

[]-(e6&):p

10/3/17

52



i Mea Culpa

= The above system can’ t handle polymorphism as
in OCAML

= No type variables in type language (only meta-
variable in the logic)

= Would need:

= Object level type variables and some kind of
type quantification

= let and let rec rules to introduce polymorphism

= Explicit rule to eliminate (instantiate)
polymorphism

10/3/17 53



i Support for Polymorphic Types

= Monomorpic Types (t):
= Basic Types: int, bool, float, string, unit, ...
= Type Variables: o, B, v, 9, €
= Compound Types: a — @3, int * string, bool list, ...
= Polymorphic Types:
=« Monomorphic types t
« Universally quantified monomorphic types
s Vo, ...,0,.T
= Canthinkof tassameas V.t

10/3/17 54



i Support for Polymorphic Types

Typing Environment I" supplies polymorphic types
(which will often just be monomorphic) for
variables

Free variables of monomorphic type just type
variables that occur in it
= Write FreeVars(t)

Free variables of polymorphic type removes
variables that are universally quantified
« FreeVars(Voy, ..., o, .t) = FreeVars(t) — {ay, ... , o, }

FreeVars(I') = all FreeVars of types in range of T

10/3/17 55



i Monomorphic to Polymorphic

s Given:

= type environment I

= Monomorp
= T Shares ty

nic type t

e variables with T

= Want most polymorphic type for t that
doesn’ t break sharing type variables with T

s Gen(t, ') =Vaq, ..., o, . T Where
{ay, ... , o} = freeVars(t) — freeVars(I')

10/3/17

56



i Polymorphic Typing Rules

s A type judgement has the form
I'|-exp:zt
« I uses polymorphic types
= 7 Still monomorphic

= Most rules stay same (except use more general
typing environments)

= Rules that change:
= Variables
= Let and Let Rec
= Allow polymorphic constants

= Worth noting functions again

10/3/17

57



* Polymorphic Let and Let Rec

s let rule:
I |- €; . Ty {X: Gen(rl,r)} + T |- e .1,
'[-(letx=eine): T

= let rec rule:
{X:ty+T|-e it {xGen(t, )} +T |- &1,
I'|[-(letrecx=¢,ine): T,

10/3/17 58



i Polymorphic Variables (Identifiers)

Variable axiom:

I'|[-x:¢(t) ifI'(X)=Vay, ..., 0,.7T
= Where ¢ replaces all occurrences of
oy, ... , O, DYy monotypes t, ..., T,
= Note: Monomorphic rule special case:
'|-x:t ifI'(x)=1
= Constants treated same way

10/3/17

59




i Fun Rule Stays the Same

= fun rule:
x:tyy+rl-e:m,
r|-funx->e:t, — 7,

= Types t,, T, monomorphic

= Function argument must always be
used at same type in function body

10/3/17 60



i Polymorphic Example

s Assume additional constants:

= hd :Vo. a list -> «

s tl: Vo. a list -> o list

= iS_empty : Vo. a list -> bool
Vo o-> olist -> o list
m []:Va. o list

10/3/17

61



i Polymorphic Example

= Show:

{} |- let rec length =
fun | -> if is_empty | then O
else 1 + length (tl )
in length ((::) 2 []) + length((::) true []) : int

10/3/17 62



i Polymorphic Example: Let Rec Rule

= Show: (1) (2)

{length:a list -> int} {length:Va. a list -> int}
|- fun | -> ... |- length ((::) 2 []) +

o list -> int length((::) true []) : int

{} |- let rec length =
fun | -> if is_empty | then O
else 1 + length (tl )
in length ((::) 2 []) + length((::) true []) : int

10/3/17 63



i Polymorphic Example (1)

= Show:

?

{length:a list -> int} |-
fun | -> if is_empty | then O

else 1 + length (tl )
o list -> int

10/3/17

64



i Polymorphic Example (1): Fun Rule

= Show: (3)
{length:a list -> int, I: o list } |-
if is_empty | then O
else length (hd 1) + length (tl 1) : int

{length:a list -> int} |-
fun | -> if is_empty | then O

else 1 + length (tl )
o list -> int

10/3/17

65



i Polymorphic Example (3)

s Let T ={length:a list -> int, |: a list }
= Show

?

I'|- if is_empty | then O
else 1 + length (tl ) : int

10/3/17

66



i Polymorphic Example (3):IfThenElse

s Let T ={length:a list -> int, |: a list }
= Show

(4) (3) (6)
I'[-is_empty | T'[-0:int T'|-1+
: bool length (tl ) : int

I'|- if is_empty | then O
else 1 + length (tl ) : int

10/3/17 67



i Polymorphic Example (4)

s Let T ={length:a list -> int, |: a list }
= Show

?

I'|- is_empty | : bool

10/3/17

68



i Polymorphic Example (4):Application

s Let T ={length:a list -> int, |: a list }
= Show

? ?

I'|-is_empty : a list -> bool I'[-1: alist

I'|- is_empty | : bool

10/3/17 69



i Polymorphic Example (4)

s Let T ={length:a list -> int, |: a list }
= Show

By Const since a list -> bool is
instance of Ya.. a list -> bool ?

I'|-is_empty : a list -> bool I'[-1: alist

I'|- is_empty | : bool

10/3/17 70



i Polymorphic Example (4)

s Let T ={length:a list -> int, |: a list }
= Show

By Const since a list -> bool is By Variable
instance of Vo. a list -> bool I'(l) = o list

I'|-is_empty : a list -> bool I'[-1: alist

I'|- is_empty | : bool
= This finishes (4)

10/3/17 /1



i Polymorphic Example (5):Const

s Let T ={length:a list -> int, |: a list }
= Show
By Const Rule

I'[- 0:int

10/3/17

72



i Polymorphic Example (6):Arith Op

s Let T ={length:a list -> int, |: a list }
= Show

By Variable

I'[- length (7)
By Const roalist->int T'|- (] : alist
I'[- 1:int I'[- length (&I 1) : int

I'[-1 + length (tl |) : int

10/3/17 73



i Polymorphic Example (7):App Rule

s Let T ={length:a list -> int, |: a list }
= Show
By Const By Variable

|- (0 1) : o list -> o list T|-1: o list

|- (t 1) : o list

By Const since a list -> a list is instance of
Yo. o list -> a list

10/3/17 74



i Polymorphic Example: (2) by ArithOp

s Let T" = {length¥ a. a list -> int}
= Show:

(8) (9)
|- |-
length ((::) 2 []) :int length((::) true []) : int

{length: o. a list -> int}
|- length ((::) 2 []) + length((::) true []) : int

10/3/17 75



i Polymorphic Example: (8)AppRule

s Let T" = {length¥ a. a list -> int}
= Show:

I’ |-length : intlist ->int T |- ((::)2 []):int

list
" |- length ((::) 2 []) :int

10/3/17 76



i Polymorphic Example: (8)AppRule

s Let T" = {length¥ a. a list -> int}
= Show:

By Var since int list -> int is instance of
vo. o list -> int
(10)
I |-length : intlist ->int T” |- ((::)2 []:int

list
" |- length ((::) 2 []) :int

10/3/17 77



i Polymorphic Example: (10)AppRule

s Let T" = {length¥ a. a list -> int}

= Show:

= By Const since a list is instance of
Yo. a list

(11)
I’ |-((::) 2) :intlist->intlist T |-[]: int list

" |- ((::) 2 [] :int list

10/3/17 78



i Polymorphic Example: (11)AppRule

s Let T" = {length¥ a. a list -> int}
= Show:

= By Const since o list
IS instance of

Vo. o list By Const

" |-(:):int->intlist->intlist T |-2:

INt
" |- ((::) 2) : int list -> int list

10/3/17 79



i Polymorphic Example: (9)AppRule

s Let T" = {length¥ a. a list -> int}
= Show:

I |- |-
length:bool list ->int  ((::) true []):bool list

I’ |- length ((::) true []) :int

10/3/17 80



i Polymorphic Example: (9)AppRule

s Let T" = {length¥ a. a list -> int}
= Show:

By Var since bool list -> int is instance of
Voa. o list -> int
(12)
|- |-
length:bool list ->int  ((::) true []):bool list

I’ |- length ((::) true []) :int

10/3/17 81



i Polymorphic Example: (12)AppRule

s Let T" = {length¥ a. a list -> int}
= Show:

= By Const since a list is instance of
Yo. a list

(13)

I |-((::)true):bool list ->bool list T |- []:bool

list
" |- ((::) true []) :bool list

10/3/17 82



i Polymorphic Example: (13)AppRule

s Let T" = {length¥ a. a list -> int}
= Show:

By Const since bool list
is instance of va. a list By Const

|- |-
(::):bool ->bool list ->bool list  true : bool

" |- ((::) true) : bool list -> bool list

10/3/17 83



