Programming Languages and
Compilers (CS 421)

»

1
Elsa L Gunter
2112 SC, UIluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/11/17 1

i Functions Over Lists

let rec double_up list =
match list
with []->[] (* pattern before ->,
expression after *)
| (x::xs)->(x::x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist = [8; 8; 5; 5; 3; 3; 2; 2; 1;
1;1; 1]

9/11/17 2

i Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with []-> []

| (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/11/17 3

i Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/11/17 4

i Structural Recursion : List Example

let rec length list = match list
with []1-> 0 (* Nil case *)
| x ;1 xs -> 1 + length xs;; (* Cons case *)

val length : ‘a list -> int = <fun>

length [5; 4; 3; 2];;

-:int=4

= Nil case [] is base case

= Cons case recurses on component list xs

9/11/17 5

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse on
components

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been traversed
to start building answer

9/11/17 6

i Forward Recursion: Examples

let rec double_up list =
match list
with[]->1[]
| (x::xs)->(x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with []-> []
| (x::xs) -> let pr = poor_rev xs in pr @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/17 7

i Question

= How do you write length with forward
recursion?

let rec length | =

9/11/17 8

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] ->
| (@ ::bs)->

9/11/17 9

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] ->
| (@::bs)-> length bs

9/11/17 10

i Question

= How do you write length with forward
recursion?

let rec length | =
match [with []-> 0
| (a::bs)-> 1+ length bs

9/11/17 11

4

Your turn now

Try Problem 2 on ML2

9/11/17 12

i An Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know
to where to return when the
h call is finished

g = What if fcalls gand g calls h,

r but calling A is the last thing g
does (a tail call)?

9/11/17 13

iAn Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know
to where to return when the
c: h call is finished

f = What if fcalls gand g calls h,
but calling his the last thing g
does (a tail call)?

= Then h can return directly to
instead of g

9/11/17 14

‘ Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

9/11/17 15

Example of Tail Recursion

= Forward recursive:
let rec prod | =
match | with []-> 1
| (X :: rem) -> x * prod rem;;
val prod : int list -> int = <fun>
= Tail recursive:
let prod list =
let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
in prod_aux list 1;;
val prod : int list -> int = <fun>

9/11/17 16

’ Question

= How do you write length with tail recursion?
let length | =

9/11/17 17

‘ Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =

9/11/17 18

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] ->
| (@:: bs) ->

9/11/17 19

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (@:: bs)->

9/11/17 20

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux

9/11/17 21

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux bs

9/11/17 22

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with []1-> n
| (a:: bs)->length_aux bs (n + 1)

9/11/17 23

i Question

= How do you write length with tail recursion?
let length | =

let rec length_aux list n =

match list with [] -> n

| (@ :: bs) -> length_aux bs (n + 1)
in length_aux 1 0

9/11/17 24

+

Your turn now

Try Problem 4 on MP2

9/11/17 25

i Mapping Recursion

= One common form of structural recursion
applies a function to each element in the

structure

let rec doubleList list = match list
with[]->1[]
| X::xs -> 2 * x :: doubleList xs;;
val doublelist : int list -> int list = <fun>
doublelList [2;3;4];;
- rint list = [4; 6; 8]

9/11/17 26

i Mapping Functions Over Lists

let rec map f list =
match list
with []-> []
| (h::t) -> (fh) :: (map ft);;
val map : ("a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
vintlist =[12; 7; 4; 2; 1; 0; 0]

9/11/17 27

i Mapping Recursion

= Can use the higher-order recursive map

function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
-1 int list = [4; 6; 8]

= Same function, but no rec

9/11/17 28

i Your turn now

Write a function
make_app : ((a ->'b) *'a) list -> *b list

that takes a list of function — input pairs
and gives the result of applying each
function to its argument. Use map, no
explicit recursion.

let make_app | =

9/11/17 29

i Folding Recursion

= Another common form “folds” an operation

over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

9/11/17 30

Folding Functions over Lists

How are the following functions similar? |
let rec sumlist list = match list with
[1->0] x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let rec prodlist list = match list with
[]->1] x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

-:int=24

9/11/17 31

Folding Functions over Lists

How are the following functions similar? |
let rec sumlList list = match list with
[1->|0]] x::xs -> x + sumList xs;;
val sumList Tintlist -> int = <fun>
s (il
let rec multkistTist = match list with
[1->[1]] x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;3;4];;
-int=24

9/11/17 32

Folding Functions over Lists

How are the following functions similar? |
let rec sumlList list = match list with
[1->[0]| x::xs -> x +[sumList xs
val sumList : int list -> int = <fun>
sumlList [2;3;4];;
-:int=9
let rec multList list = match list
[1->[L]| x::xs -> x * [multList xs
val multList : int list -> int = <fun>
multList [2;3;4];;
-1int=24

Recursive Call

th

9/11/17 33

Folding Functions over Lists

How are the following functions similar? |
let rec sumList list = match list with
[1->[0]] x::xs ->[x|+[sumList xs};
val sumlList : int list -> int= n>
sumlList [2;3;4];;
-:1int=9
let rec multList list = match list with
[1->[I]] x::xs ->[X * [multCist xs};
val multList : int list -> int = <fun>
multList [2;3;4];;
-:int=24

9/11/17 34

i Folding Functions over Lists

| How are the following functions similar? |
let rec sumList list = match list with

[1->[0]] x::xs ->[x]+[sumList xs};

val sumList : int list ->‘int=_<fun>
#S‘Il:]TE'Sg [2:3:4137 |Combining Operation |

let rec multList list = match list with
[1->[1]] x::xs ->[* [multList xs};

val multList : int list -> int = <fun>

multlist [2;3;4];;

-:int=24

9/11/17 35

i Folding Functions over Lists

| How are the following functions similar? |

let rec sumlList list = match list with
[1->[0]1 x::xs -51[x]+ N,

val sumlList : int list ->"int=_<fun>

sumlList [2;3;4];;

-:1int=9

let rec multList list = match list with
11 ->(T]) oes -5~ N,

val multList : int list -> int = <fun>

multList [2;3;4];;

-:int = 24R

|Combining Operation |

9/11/17 36

Recursing over lists

let rec fold_right f list b =
match list
with []-> b
| (x::xs) -> f x (fold_right f xs b);; Recursion Fairy
val fold_right : ('a->'b->'b)->'alist->'b->'b =
<fun>
fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
0
therehi- : unit = ()

9/11/17 37

i Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(funx ->fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

9/11/17 38

i Encoding Recursion with Fold

let rec append listl list2 = match list1 with
[]-> list2 | x::xs -> x :: append xs list2;;
val ap[?énd :'alist -> 'Ia list ->§§ list = <fun>

| Base Case | |Operation ||Recursive Call |

let append listl listZ=
fold_right (fun x y -> x :7y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
-rintlist = [1; 2; 3; 4; 5; 6]

9/11/17 39

i Question

let rec length | =
match | with []-> 0
| (@ ::bs)->1+ length bs

How do you write length with fold_right, but
no explicit recursion?

9/11/17 40

i Question

let rec length | =
match [with []-> 0
| (@ ::bs)->1+ length bs

= |How do you write length with fold_right, but
no explicit recursion?

let length list =
List.fold_right (fun x -> funn-> n+ 1) list 0

9/11/17 4

* Map from Fold

let map f list =

fold_right (fun x -> funy -> f x :: y) list
[1

valmap : ('a->'b) -> 'alist -> 'b list =
<fun>

map ((+)1) [1;2;3];;

- rintlist = [2; 3; 4]

= Can you write fold_right (or fold_left) with
just map? How, or why not?

9/11/17 2

Iterating over lists

let rec fold_left f a list =

match list

with []-> a

| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->'a=

<fun>
fold_left

(fun () -> print_string)

0
[llhill; lltherell];;
hithere- : unit = ()

iEncoding Tail Recursion with fold_left

let prod list = let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list-1;;

val prod : int list=> int = <fun>

IInit Acc Value | |Recursive Call | IOperation |

let prod%
List.fold_left (fun accy -> acc * y)1 list;;

val prod: int list -> int = <fun>
prod [4;5;6];;

-1int =120
9/11/17 43 9/11/17 44
i Question ‘ Question
let length | = let length | =

let rec length_aux list n =

match list with [] -> n

| (@:: bs) -> length_aux bs (n + 1)
in length_aux 1 0

= How do you write length with fold_left, but
no explicit recursion?

9/11/17 45

let rec length_aux list n =

match list with [] -> n

| (@::bs)->length_aux bs (n + 1)
in length_aux 1 0

= How do you write length with fold_left, but
no explicit recursion?

let length list =
List.fold_left (fun n -> fun x -> n + 1) 0 list
9/11/17 46

i Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->'a)->'a->'blist->"a =
<fun>
fold_left f a [xy; X5;...;%,] = f(...(f (F @ X{) X5)...)X,

let rec fold_right f list b = match list
with []-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ("a->'b->'b)->'alist->'b->'b =
<fun>
|fold_right f [Xq; Xo5..5%] b = £ x,(F %, (...(F x, b)...)) |

9/11/17 47

* Recall

let rec poor_rev list = match list
with []-> []
| (X::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

What is its running time?

9/11/17 48

i Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (X::xs) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/17 49

iTaiI Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| x i1 xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [1;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/11/17 50

i Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @[3]) @ [2]) @[1] =
s ([l@[B) @[2])) @[1]) =

» (Bl@[2) @[1] =

s Gu([]@[2]) @[1] =

= [32]@[1] =

» 3u([2]@[1]) =
«3nu(l@[]) =103 2 1]

9/11/17 51

i Comparison

mrev[l,23] =
mrev_aux[1,2,3][] =

» rev_aux [2,3] [1] =

m rev_aux [3] [2,1] =

= rev_aux [][3,2,1] = [3,2,1]

9/11/17 52

i Folding - Tail Recursion

- #letrevlist =
fold_left
(funl->funx->x::1) //comb op
[] //accumulator cell
list

9/11/17 53

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

9/11/17 54

iContinuation Passing Style

= A programming technique for all forms
of “non-local” control flow:
= hon-local jumps
= exceptions
= general conversion of non-tail calls to tail

calls

= Essentially it’ s a higher-order function

version of GOTO

9/11/17 55

i Continuations

= Idea: Use functions to represent the control
flow of a program

= Method: Each procedure takes a function as
an argument to which to pass its result;
outer procedure “returns” no result

= Function receiving the result called a
continuation

= Continuation acts as “accumulator” for work
still to be done

9/11/17 56

‘ Example of Tail Recursion

letrecapp flx =
match fl with [] -> x
| (f :: rem_fs) —>|f (app rem_fs x);;I
val app : (‘a -> 'a) list ->\a -> 'a = <fun>
letapp fsx =
let rec app_aux fl acc=
match fl with [] -> acc
| (f:: rem_fs) -> app_aux rem_
|(fun z -> acc (f z)) |
in app_aux fs (funy ->y) x;;
val app : (‘a -> 'a) list -> 'a -> 'a = <fun>

9/11/17 57

‘ Continuation Passing Style

= Writing procedures so that they take a
continuation to which to give (pass) the
result, and return no result, is called
continuation passing style (CPS)

9/11/17 58

’ Example of Tail Recursion & CSP

let app fs x =
let rec app_aux fl acc=
match fl with [] -> acc
| (f :: rem_fs) -> app_aux rem_fs
(fun z -> acc (f 2))
in app_aux fs (funy ->y) x;;
val app : (‘a -> 'a) list -> 'a -> 'a = <fun>
let rec appk fl x k =
match fl with []-> k x
| (f :: rem_fs) -> appk rem_fs x (fun z -> k (f 2));;
val appk : (‘la->'a)list->'a->(a->'b)->'b

9/11/17 59

‘ Continuation Passing Style

= A compilation technique to implement non-
local control flow, especially useful in
interpreters.

= A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

9/11/17 60

i Terms

= A function is in Direct Style when it returns
its result back to the caller.

= A Tail Call occurs when a function returns
the result of another function call without
any more computations (eg tail recursion)

= A function is in Continuation Passing Style
when it passes its result to another function.

= Instead of returning the result to the caller,
we pass it forward to another function.

9/11/17 61

iContinuation Passing Style

= A compilation technique to implement non-
local control flow, especially useful in
interpreters.

= A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

9/11/17 62

Example

= Simple reporting continuation: |
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:l

let pluskabk =k (a+b)

val plusk : int -> int -> (int -> "a) -> "a = <fun>
plusk 20 22 report;;

42

-unit=()

9/11/17 63

‘ Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

let subk x y k = k(x +y);;

val subk : int -> int -> (int -> 'a) -> 'a = <fun>

#letegkxy k =k(x =vy);;

val egk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>

let timesk x y k = k(x *y);;

val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

9/11/17 64

’ Nesting Continuations

letadd_threexyz=x+y + z;
val add_three : int -> int -> int -> int = <fun>
letadd_threexyz=letp=x+yin p+z;
val add_three : int -> int -> int -> int = <fun>
let add_three_k xy z k =
addk x y|(fun p -> addk p z[K]);;
val add_three_k : int -> int -> int -> (int -> 'a)
->'a = <fun>

9/11/17 65

