Programming Languages and
Compilers (CS 421)

IElsa L Gunter ﬁ
2112 SC, UIUC \

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/5/17 1

iBooleans (aka Truth Values)

true;;
- : bool = true
false;;
- : bool = false

/| p;={c—4,test =3.7,a—1,b—5}
if b > athen 25 else 0;;
-1int =25

9/5/17

* Booleans and Short-Circuit Evaluation

#3>18&8&4>6;;

- : bool = false

#3>11|4>6;;

- : bool = true

(print_string "Hi\n"; 3> 1) || 4 > 6;;
Hi

- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

not (4 > 6);;

- : bool = true

9/5/17 3

* Tuples as Values

// py={C—>4,test—>3.7, 51 b5
a—1 b—>5} test > 3.
., c>4
lets = (5,"hi",3.2);;
val s : int * string * float = (5, "hi", 3.2)

/] pg ={s — (5, "hi", 3.2),
c— 4, test = 3.7,
a—1,b—5}

5
test > 3.7
c>4

s (5 ’hi", 3.2)

9/5/17

iPattern Matching with Tuples

[pg=1s = (5 "hi",3.2), _(as1 25 547
c— 4, test - 3.7,
a—=1,b—5}

let (a,b,c) =s;; (* (a,b,c) is a pattern *

vala:int=5

val b : string = "hi"

val ¢ : float = 3.2

c>4

s (5,°hi", 3.2)

Ocaml *)
val x : int * float = (2, 9.3)

9/5/17 5

35 b>'h test>37
s (5,’h",32) c>32
x> (2,9.3)

‘ Nested Tuples

(*Tuples can be nested *)

letd = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

val p :int * int * int = (1, 4, 62)

val st : string = "bye"

9/5/17 6

‘ Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-rint=7

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-:rint *int = (3, 3)

double "hi";;

- : string * string = ("hi", "hi")

9/5/17 7

‘ Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-rint=7

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-rint*int = (3, 3)

double "hi";;

- 1 string * string = ("hi", "hi")

9/5/17 8

i Save the Environment!

= A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:
< (vi,...,vn) —exp, p >
= Where p is the environment in effect when
the function is defined (for a simple function)

9/5/17 9

i Closure for plus_pair

= Assume p,s pair Was the environment just
before plus_pair defined

= Closure for fun (n,m) -> n + m:
<(n,m) = n+ M, Py pair™>
= Environment just after plus_pair defined:
{plus_pair — <(n,m) = n + m, pyys pair >+

* Pplus_pair

9/5/17 10

’ Functions with more than one argument

letadd_threexyz=x+y +z;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
valt:int=11
let add_three =
funx-> (funy-> (funz->x+vy +2);;
val add_three : int -> int -> int -> int = <fun>

|Again, first syntactic sugar for second |

9/5/17 1

val add_three : int -> int -> int -> int = <fun>
= How does it differ from

let add_triple (u,v,w) =u + v + w;;

val add_triple : int * int * int -> int = <fun>

= add_three is curried,
= add_triple is uncurried

9/5/17 12

‘ Curried vs Uncurried

add_triple (6,3,2);;
-rint =11
add_triple 5 4;;
Characters 0-10:
add_triple 5 4;;
ANNNNNNNNN
This function is applied to too many arguments,
maybe you forgot a *;'
fun x -> add_triple (5,4,x);;
:int -> int = <fun>

9/5/17 13

‘ Partial application of functions

|let add_three x y z = X +y + 7;;

let h = add_three 5 4;;

val h :int -> int = <fun>

#h3;;

-rint =12

#h7;

- 1int =16

|- Partial application also called sectioning |

9/5/17 14

i Recall: let plus_x = fun x =>vy + x

let x = 12

let plus_x =funy=>y +x

letx=7

9/5/17 15

* Closure for plus_x

= When plus_x was defined, had environment:
pplus_x — {, X — 12, }
= Recall: let plus_xy =y + x
is really let plus_x =funy ->vy + x
= Closure for funy -> vy + x:
<Y =Y+ X Pplus_x >
= Environment just after plus_x defined:

{plus_x = <y =y +x, Pplus_x >} + Pplus_x

9/5/17 16

’ Evaluating declarations

= Evaluation uses an environment p

= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update p withxv: {x =V} +p

= Update: p,+ p, has all the bindings in p; and
all those in p, that are not rebound in p;

{x =2,y —3,a—"hi"} + {y — 100, b — 6}
={x—>2,y—3,a—"hi", b — 6}

9/5/17 17

‘ Evaluating expressions

= Evaluation uses an environment p
= A constant evaluates to itself
= To evaluate an variable, look it up in p (p(Vv))

= To evaluate uses of +, _, etc, eval args,
then do operation

= Function expression evaluates to its closure

= To evaluate a local dec: let x = el in e2
= Eval el to v, eval e2 using {x — v} + p

9/5/17 18

iEvaluation of Application with Closures

= Given application expression f(e,...,e,)

= In environment p, evaluate left term to closure,
€ = <(Xy,-.,X,) = b, p>

= (Xy,...,X,) variables in (first) argument
= Evaluate (ey,...,e,) to value (vy,...,v,)
= Update the environment p to

P’ ={X; = Vi X, =V 3 p
= Evaluate body b in environment p’

9/5/17 19

iEvaIuation of Application of plus_x;;

= Have environment:
p = A{plus_X = <y =y + X, ppjys x >/ - »
y—3, ..}
where Pplus x = {x—12,..,y—=24, ...}
= Eval (plus_xy, p) rewrites to
= App (Eval(plus_x, p) , Eval(y, p)) rewrites to
= App (Ky =y + X, Pplus_x > 3) rewrites to
= Eval (y + x, {y = 3} +ppjys_x) rewrites to
= Eval 3 + 12, ppyys) = 15

9/5/17 20

* Evaluation of Application of plus_pair

= Assume environment

p={x—=3.,
plus_pair —<(n,m) —=n + M, pyus pair™>} +

pplus_pair
= Eval (plus_pair (4,x), p)=

App (Eval (plus_pair, p), Eval ((4,x), p)) =
App (<(n,m) —n + m, Pplus_pair™r (4,3)) =

= Eval (n+m, {n->4, m->3} + prue pair) =
m Eval(4+3,{n->4, m->3} + pplus_pair) =7

9/5/17 21

* Closure question

= If we start in an empty environment, and we
execute:

letf=funn->n+5;;

(*0*)

let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;

leta = f (4,6);;

What is the environment at (* 0 *)?

9/5/17 22

iAnswer

letf=funn->n+5;

po={f=<n—=n+5,{}>}

9/5/17 23

‘ Closure question

= If we start in an empty environment, and we
execute:

let f = fun=>n+5;;

let pair_map g (n,m) = (g n, g m);;
(*1%)

let f = pair_map f;;

leta =f(4,6);;

What is the environment at (* 1 *)?

9/5/17 24

iAnswer

po={f—=<n—=n+5{}>}
let pair_map g (n,m) = (g n, g m);;

p; = {pair_map —
<g — fun (n,m)->(gn, gm),
{f><n—-=n+5{}>}>,
f—><n—-n+5{}>}

9/5/17 25

iCIosure question

= If we start in an empty environment, and we
execute:

let f = fun=>n+5;;

let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;

(*2%)

leta =f (4,6);;

What is the environment at (* 2 *)?

9/5/17 26

* Evaluate pair_map f

po={f—=<n—=n+5{}>}

p; = {pair_map —<g—fun (n,m) -> (g n, g m), py>,
f><n—=n+5{}>}

let f = pair_map f;;

9/5/17 27

* Evaluate pair_map f

po={f—=<n—=n+5{}>}

p; = {pair_map —<g—fun (n,m) -> (g n, g m), p,>,
f><n—-=n+5,{}>}

Eval(pair_map f, p;) =

9/5/17 28

iEvaluate pair_map f

pp={f—=<n—=n+5{}>}

p; = {pair_map —<g—fun (n,m) -> (g n, g m), py>,
f><n—=n+5,{}>}

Eval(pair_map f, p;) =

App (<g—fun (n,m) -> (g n, g m), py>,
<n—=n+5{}>)=

9/5/17 29

iEvaluate pair_map f

po={f—=<n—=n+5 {}>}

p; = {pair_map —<g—fun (n,m) -> (g n, g m), po>,
f><n—-=n+5,{}>}

Eval(pair_map f, p;) =

App (<g—fun (n,m) -> (g n, g m), py>,
<n—=n+5{}>)=

Eval(fun (n,m)->(g n, g m), {g—<n—=n + 5, { }>}+p,)

=<(nlm) _>(g nl g m)l {g_><n_>n + 51 { }>}+p0>

=<(n,m) (g n, g m), {g—=<n—n+5,{ }>

f-<n—-n+5,{}>}

9/5/17 30

iAnswer

p; = {pair_map —
<g— fun(nm)->(gn,gm){f—=<n—-=n+5,{}>}>,
f—-<n—-n+5{}>}

let f = pair_map f;;

p2 = {f - <(nlm) _>(g nl g m)l
{g—=<n—=n+5,{3}>,
f-><n—=n+5{}>}>,

pair_map — <g — fun (n,m) ->(gn, g m),
{f><n—-=n+5,{}>}>}

9/5/17 31

iCIosure question

= If we start in an empty environment, and we
execute:

let f = fun=>n+5;;

let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;

leta =f(4,6);;

(*3%)

What is the environment at (* 3 *)?

9/5/17 32

* Final Evalution?

p, = A{f — <(n,m) —=(g n, g m),
{g—=<n—=n+5{3}>,
f=<n—-n+5{}>}>,

pair_map — <g — fun (n,m) -> (g n, g m),
{f=><n—-=n+5{}>}>}

leta = f (4,6);;

9/5/17 33

* Evaluate f (4,6);;

p, = {f — <(n,m) —(g n, g m),
{g—=<n—=n+5{}>,
f-<n—-n+5{}>}>,

pair_map — <g — fun (n,m) -> (g n, g m),
{f—=<n—-=n+5{}>}>}

Eval(f (4,6), p,) =

9/5/17 34

iEvaluate f(4,6):

p, = {f = <(n,m) —(g n, g m),
{g—=<n—=n+5,{3}>,
f-><n—=n+5{}>}>,

pair_map — <g — fun (n,m) -> (g n, g m),
{f><n—-=n+5,{}>}>}

Eval(f (4,6), p,) =

App(<(n,m) =(gn,gm),{g —><n—->n+5{}>,
f—<n—=n+5{}>}>,

(4,6)) =

9/5/17 35

iEvaIuate f(4,6)::

App(<(n,m) —=(gn,gm), {g = <n—n+5{}>
f—=<n—=n+5,{}>}>,

(4,6)) =
Eval((gn,gm),{n -4, m— 6} +
{g—=<n—=n+5{}>,
f=<n—-n+5{}>}) =
(App(<n = n+5,{3}>,4),
App(<n—=n+5,{}>,6)) =

9/5/17 36

iEvaluate f (4,6);;

(App(<n = n+5,{3}>,4),
App(<n—=n+5,{}>, 6)) =

(Eval(n + 5, {n - 4} +{}),

Evalln +5,{n =6} +{})) =

(Eval(4 +5,{n =4} +{),

Eval(6 + 5,{n =6} +{})) =(9, 11)

9/5/17 37

iFunctions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a->'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g :int -> int = <fun>

#94;;

-:int=10

thrice (fun s -> "Hi! " ~ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

9/5/17 38

* Higher Order Functions

= A function is higher-order if it takes a
function as an argument or returns one as
a result

= Example:

let compose f g = fun x -> f (g x);;

val compose : ('a->'b) -> (‘'c->"'a) -> 'c¢ >
'b = <fun>

= Thetype ('a->'b)-> ('c->'a)->'c->'b
is a higher order type because of
(‘a->"b)and ('c->'a)and ->'c->'b

9/5/17 39

Thrice

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
| =« How do you write thrice with compose? |

9/5/17 40

let thrice f x = f (f (f x));;

val thrice : (‘a -> 'a) -> 'a-> 'a = <fun>
| « How do you write thrice with compose? |
let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
= Is this the only way?

9/5/17 41

‘ Lambda Lifting

= You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
letadd2 = (* lambda lifted *)

fun x -> (+) (print_string "test\n"; 2) x;;
val add? : int -> int = <fun>

9/5/17 42

iLambda Lifting

thrice add_two 5;;

-:rint=11

thrice add2 5;;
test

test

test

-rint=11

= Lambda lifting delayed the evaluation of the
argument to (+) until the second argument
was supplied

9/5/17 43

iPartial Application and “Unknown Types”

| = Recall compose plus_two: |
let f1 = compose plus_two;;
val fl : ("_a->int) ->'_a -> int = <fun>

| = Compare to lambda lifted version: |
let f2 = fun g -> compose plus_two g;;
val f2 : (‘fa-> int) -> 'a -> int = <fun>

| =« What is the difference? |

9/5/17 44

Partial Application and “Unknown Types”

= ‘_a can only be instantiated once for an expressionl
f1 plus_two;;
- rint -> int = <fun>
f1 List.length;;
Characters 3-14:
f1 List.length;;

NANNNNNNNNNN

This expression has type 'a list -> int but is here used
with type int -> int

9/5/17 45

* Partial Application and “Unknown Types”

|. ‘a can be repeatedly instantiated |

f2 plus_two;;

-int-> int = <fun>

f2 List.length;;

-: " alist -> int = <fun>

9/5/17 46

iMatch Expressions

let triple_to_pair triple =

*Each clause: pattern on

match triple
left, expression on right

with (0, X, ¥) -> (X, y)

| (Xr OI Y) -> (XI Y)
Xy)= (XY *Use first matching clause

*Each x, y has scope of
only its clause

val triple_to_pair : int * int * int -> int * int =
<fun>

9/5/17 47

‘ Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120
(* rec is needed for recursive function
declarations *)

9/5/17 48

‘ Recursion Example ‘ Recursion and Induction

Compute n? recursively using: # let rec nthsg n = match n with 0-> 0
n=(2*n-1)+ (n-1) [n->2*n-1)+nthsg(n-1);;
let rec nthsg n = (* rec for recursion *)
WEECB n 0 * Patzirga?:té?;slgg*;or cases *) = Base case is the last case; it stops the computation
|n->(2%*n-1) (* recursive case *) = Recursive call must be to arguments that are
+ nthsq (n -1);; (* recursive call *) somehow smaller - must progress to base case

val nthsq : int -> int = <fun>
nthsq 3;;
- rint=9

if or match must contain base case
Failure of these may cause failure of termination

Structure of recursion similar to inductive proof |

9/5/17 49 9/5/17 50

i Lists * Lists

= First example of a recursive datatype (aka

= List can take one of two forms:
algebraic datatype)

= Empty list, written []
. .) = Non-empty list, written x :: xs
= Unlike tuples, lists are homogeneous in

= X is head element, xs is tail list, :: called
type (all elements same type) “cons” ! !

= Syntactic sugar: [x] ==x:: []
s [X1;x2; .o xn]==x1:ux2: . axn[]
9/5/17

51 9/5/17 52

’ Lists ‘ Lists are Homogeneous

let fib = [8;5;3;2;1,1];; # let bad_list = [1; 3.2; 71;;
val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fibG = 13 - fibs Characters 19-22:

et fibé = 13 :: fib5;; e rd o .

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1] let bad_list = [1; 3'/2\’/3\]”

(8::5::3::2::1::1::[]) = fib5;;)])

- bool = true This expression has type float but is here
L . d with type int

fib5 @ fib6;; use

-:intlist=18;5;3;2;1;1;13;8;5; 3; 2; 1;
1]
9/5/17

53 9/5/17 54

‘ Question

= Which one of these lists is invalid?

1. [2;3; 4; 6]

2. [2,3;4,5; 6,7]

3. [(2.3,4); (3.2,5); (6,7.2)]

4. [[“hi”; “there”]; [“wahcha”]; [1; [“doin”]]
9/5/17 55

‘ Answer

= Which one of these lists is invalid?

[2; 3; 4; 6]

[2,3; 4,5; 6,7]

[(2.3,4); (3.2,5); (6,7.2)]

[[“hi”; “there”]; [“wahcha”]; [1; [“doin”]]

i A

= 3is invalid because of last pair

9/5/17 56

i Functions Over Lists

let rec double_up list =
match list
with[]->[] (* pattern before ->,
expression after *)
| (x::xs)->(x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist=[8; 8;5; 5; 3; 3; 2; 2; 1;
1;1;1]

9/5/17 57

* Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with []-> []

| (X::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/5/17 58

’ Question: Length of list

= Problem: write code for the length of the list
= How to start?

let length | =

9/5/17 59

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?

let rec length | =
match | with

9/5/17 60

‘ Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with

9/5/17 61

‘ Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?
let rec length | =
match | with [] ->
| (a::bs)->

9/5/17 62

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is empty?
let rec length | =
match | with []-> 0
| (@ ::bs)->

9/5/17 63

* Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?
let rec length | =
match | with []-> 0
| (a::bs)->

9/5/17 64

’ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?

let rec length | =
match | with []-> 0
| (@:: bs)-> 1+ length bs

9/5/17 65

iSame Length

= How can we efficiently answer if two lists
have the same length?

9/5/17 66

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length listl list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/5/17 67

‘ Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh) :: (map ft);;
valmap : (‘fa->'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-rintlist =[10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
pintlist =[12; 7; 4; 2; 1; 0; 0]

9/5/17 68

Iterating over lists

let rec fold_left f a list =
match list
with []1-> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: (a->'b->'a)->'a->'blist->"'a =
<fun>
fold_left
(fun () -> print_string)

0
["hi"; "there"];;
hithere- : unit = ()

9/5/17 69

* Iterating over lists

let rec fold_right f list b =
match list
with[]-> b
| (x:: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b)->"'alist->'b->"'b =
<fun>
fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
05
therehi- : unit = ()

9/5/17 70

’ Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/5/17 71

‘ Structural Recursion : List Example

let rec length list = match list
with []-> 0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

-:int=4

= Nil case [] is base case

= Cons case recurses on component list xs

9/5/17 72

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

9/5/17 73

‘ Forward Recursion: Examples

let rec double_up list =
match list
with[]->1[1]
| (x::xs)->(x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [1-> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/5/17 74

* Encoding Recursion with Fold

let rec append listl list2 = match list1 with
[1-> list2 | x::xs -> x :: append xs list2;;
val app)énd :'alist -> 1a list ->§§ list = <fun>

| Base Case | |Operation || Recursive Call |

let append listl listZ=
fold_right (fun x y -> x :7y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
-iintlist = [1; 2; 3; 4; 5; 6]

9/5/17 75

* Mapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with[]1->1[1]
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- rint list = [4; 6; 8]

9/5/17 76

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion
let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- 1 int list = [4; 6; 8]

= Same function, but no rec

9/5/17 77

‘ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

9/5/17 78

iFoIding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

9/5/17

79

iHow long will it take?

= Remember the big-O notation from CS 225
and CS 273

= Question: given input of size n, how long to
generate output?

= Express output time in terms of input size,
omit constants and take biggest power

9/5/17 80

i How long will it take?

Common big-0 times:
= Constant time O (1)
= input size doesn’t matter
= Linear time O (n)
= double input = double time
= Quadratic time O (n?)
= double input = quadruple time
= Exponential time O (2")
= increment input = double time

9/5/17

81

i Linear Time

= Expect most list operations to take
linear time O (n)

= Each step of the recursion can be done
in constant time

= Each step makes only one recursive call
= List example: multList, append
= Integer example: factorial

9/5/17 82

iQuadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

» List example:

let rec poor_rev list = match list
with []-> []
| (x::xs) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

9/5/17

83

iExponentiaI running time

= Hideous running times on input of any size
= Each step of recursion takes constant time
= Each recursion makes two recursive calls

= Easy to write naive code that is exponential

for functions that can be linear

9/5/17 84

iExponential running time

let rec naiveFib n = match n
with0-> 0
|1->1
| _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>

9/5/17

85

iAn Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know
to where to return when the
h call is finished

g = What if fcalls gand g calls A,

P but calling A is the last thing g
does (a tail call)?

T T

9/5/17 86

i An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know

to where to return when the
call is finished

f = What if fcalls gand g calls h,

L h

4

does (a tail call)?

= Then h can return directly to
instead of g

9/5/17

but calling A is the last thing g

f

87

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

9/5/17 88

’ Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

letrev list = rev_aux list [1;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/5/17

89

iComparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[)@[3]) @[2]) @[1] =
s ([1@[3]) @[2]) @[1]) =

s (Bl@2)@[1] =
 Bu([l@2))@[1]=

= [32]@[1] =

=3 (R]@[1]) =

s 30 Qu(l1@[1]) =13, 2, 1]

9/5/17 90

‘ Comparison

srev[l,23] =

s rev_aux[1,2,3][]=

= rev_aux [2,3][1] =

= rev_aux [3][2,1] =

= rev_aux [][3,2,1] =[3,2,1]

9/5/17 91

Folding Functions over Lists

| How are the following functions similar? |

let rec sumlist list = match list with
[1->0] x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let rec prodlist list = match list with
[]->1]x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

-:int=24

9/5/17 92

* Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->'a=
<fun>
fold_left f a [xy; Xy;...;%,] = f(...(F (f @ x1) X5)...)X,

let rec fold_right f list b = match list
with []1-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b)->'alist->'b->'b =
<fun>
|fo|d_right f [Xq; Xo5..;%,] b = £ x,(F %, (...(f x, b)...)) |

9/5/17 93

* Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

- rint =24

9/5/17 94

’ Folding - Tail Recursion

- # letrev list =
fold_left
(funl->funx->x:1) //combop
(] //accumulator cell
list

9/5/17 95

iFoIding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

9/5/17 96

