Programming Languages and
Compilers (CS 421)

¥
Elsa L Gunter ﬁ
2112 SC, UluC

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/12/17

i Contact Information - Elsa L Gunter

= Office: 2112 SC

= Office hours:
= Thursday 9:00am — 9:50pm
= Friday 1:00pm — 1:50pm
= Also by appointment

= Email: egunter@illinois.edu

9/12/17

* Overflow Section

= If you are not registered and want to be, fill
out the form at

= http://go.cs.illinois.edu/CS4210verflow

9/12/17

* Course TAs

Taiyu Dong Dan Plyukhin

Jing Huang Fan Yang

9/12/17

* Contact Information - TAs

= Teaching Assistants Office: 0207 SC

= Taiyu Dong
= Email: tdong7@illinois.edu
= Hours: Mon 9:00am — 9:50am
Thu 2:00pm — 2:50pm

= Jing Huang
= Email: jhuang81@illinois.edu
= Hours: Tue 6:00pm — 7:40pm

9/12/17

i Contact Information — TAs cont

= Dan Plyukhin
= Email: daniilp2@illinois.edu
= Hours: Mon, Wed 12:30pm — 1:20pm

= Fan Yan
= Email: fanyang6@illinois.edu
= Hours: Wed, Fri 9:00am — 9:50am

9/12/17

Course Website

= https://courses.engr.illinois.edu/cs421/fa2017/CS421D
= Main page - summary of news items

= Policy - rules governing course

= Lectures - syllabus and slides

= MPs - information about assignments

= Exams

= Unit Projects - for 4 credit students

= Resources - tools and helpful info

= FAQ

9/12/17 7

‘ Some Course References

= No required textbook
= Some suggested references

1 a 'l*\ i
SSENTIALS

| /ESSENTI
OF PROGRAMMING
. LANGUAGES

9/12/17 8

* Some Course References

= No required textbook.
= Pictures of the books on previous slide

= Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

= Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN:
0-201-10088-6.

= Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

= Additional ones for Ocaml given separately

9/12/17 9

* Course Grading

= Assignments 20%
= About 12 Web Assignments (WA) (~7%)
= About 6 MPs (in Ocaml) (~7%)
= About 5 Labs (~6%)
= All WAs and MPs Submitted by PrairieLearn
= Late submission penalty: 20%
= Labs in Computer-Based Testing Center
(Grainger)
= Self-scheduled over a three day period
= No extensions beyond the three day period
= Fall back: Labs become MPs

9/12/17 10

’ Course Grading

= 2 Midterms - 20% each
= Labs in Computer-Based Testing Center (Grainger)
= Self-scheduled over a three day period
= No extensions beyond the three day period

= Fall back: In class backup dates — Oct 12, Nov 16
= DO NOT MISS EXAM DATES!

= Final 40% - Dec 19, 8:00am — 11:00am

= Mayuse of CBTC for Final

= Percentages are approximate

9/12/17 11

‘ Course Assingments — WA & MP

= You may discuss assignments and their solutions
with others

= You may work in groups, but you must list
members with whom you worked if you share
solutions or solution outlines

= Each student must write up and turn in their
own solution separately

= You may look at examples from class and other
similar examples from any source — cite
appropriately
= Note: University policy on plagiarism still holds - cite your

sources if you are not the sole author of your solution

9/12/17 12

iProgramming Languages & Compilers

Three Main Topics of the Course

Language
Semantics

Language
Translation

New
Programming
Paradigm

9/12/17 13

iProgramming Languages & Compilers

Order of Evaluation
,//”” \\\\\

__ Specification to Implementation

9/12/17 14

* Programming Languages & Compilers

| : New Programming Paradigm

Functional

Programming Passing
Closures Style

9/12/17 15

* Programming Languages & Compilers

uation
,/ \

Order of Eval

Specification to Implementation

9/12/17 16

iProgramming Languages & Compilers

Il : Language Translation

Lexing and Interpretation

Parsing

9/12/17 17

‘ Programming Languages & Compilers

__ Specification to Implementation

9/12/17 18

iProgramming Languages & Compilers

Il : Language Semantics

Operational

Lambda
Calculus

Axiomatic

Semantics Semantics

9/12/17 19

‘ Programming Languages & Compilers

Order of Evaluation

/ AN ya

erational |\ Lambda

"cs426
- CS477

Specification'falrmplementation —

9/12/17

(Cs422)

20

i Course Objectives

= New programming paradigm
= Functional programming
= Environments and Closures
= Patterns of Recursion
= Continuation Passing Style

= Phases of an interpreter / compiler
= Lexing and parsing
= Type systems
= Interpretation

= Programming Language Semantics
= Lambda Calculus
= Operational Semantics
= Axiomatic Semantics

9/12/17 21

i OCAML

= Locally:
= Compiler is on the EWS-linux systems at
/usr/local/bin/ocaml
= Globally:
= Main CAML home: http://ocaml.org

= To install OCAML on your computer see:
http://ocaml.org/docs/install.html

9/12/17 22

iReferences for OCaml

= Supplemental texts (not required):

= The Objective Caml system release 4.05, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’ Reilly
= Available online from course resources

9/12/17 23

iOCAML Background

= CAML is European descendant of original ML
= American/British version is SML
= O is for object-oriented extension
= ML stands for Meta-Language
= ML family designed for implementing
theorem provers
= It was the meta-language for programming the
“object” language of the theorem prover

= Despite obscure original application area, OCAML
is a full general-purpose programming language

9/12/17 %

iFeatures of OCAML

= Higher order applicative language
= Call-by-value parameter passing
= Modern syntax
= Parametric polymorphism

= Aka structural polymorphism
= Automatic garbage collection
= User-defined algebraic data types

= It's fast - winners of the 1999 and 2000 ICFP
Programming Contests used OCAML

9/12/17 25

‘ Why learn OCAML?

= Many features not clearly in languages you have
already learned

= Assumed basis for much research in programming
language research

= OCAML is particularly efficient for programming
tasks involving languages (eg parsing, compilers,
user interfaces)

= Industrially Relevant: Jane Street trades billions of
dollars per day using OCaml programs

= Similar languages: Microsoft F#, SML, Haskell,
Scala

9/12/17 26

i Session in OCAML

% ocaml
Objective Caml version 4.01

(* Read-eval-print loop; expressions and
declarations

2+3 (* Expression *)
- int=5
#3<2;;
- : bool = false

9/12/17 27

i No Overloading for Basic Arithmetic Operations

15 * 2;;
-:int =30
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
1.35 + 0.23;; (* Wrong type of addition *)
NANANAN
Error: This expression has type float but an
expression was expected of type
int
1.35 +. 0.23;;
- : float = 1.58

9/12/17 28

No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;; (* No Implicit Coercion *)
NAANAN
Error: This expression has type float but an
expression was expected of type
int

9/12/17 29

‘ Sequencing Expressions

"Hi there";; (* has type string *)
- : string = "Hi there"

"Hello world\n";; (* has type unit *)
Hello world

-aunit=()

(print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye

-:int=25

9/12/17 30

iDecIarations; Sequencing of Declarations

#letx =2+ 3;; (* declaration *)

valx:int=5

lettest = 3 < 2;;

val test : bool = false

#leta=1letb =a+ 4;; (* Sequence of dec
*)

vala:int=1

valb:int=5

9/12/17 31

iEnvironments

= Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language

= Notation

p = {name, — value;, name,— value,, ...}

Using set notation, but describes a partial function

= Often stored as list, or stack
= To find value start from left and take first match

9/12/17 32

’ Environments

X=>3

name = “Steve”

region = (5.4, 3.7)

y =217

— id = {Name = “Paul’,
b = true Age = 23,

_ SSN = 999888777}

9/12/17 33

* Global Variable Creation

#2+3;; (*Expression *)

// doesn’ t affect the environment

lettest = 3 < 2;; (* Declaration *)
val test : bool = false

/] p, = {test — false}

#leta=1letb =a+ 4;; (* Seq of dec *)
/] p, ={b—5,a—1, test — false}

9/12/17 34

’ Environments

test = true
b=>5

9/12/17 35

‘ New Bindings Hide Old

/l p, ={b—5,a— 1, test — false}
let test = 3.7;;

= What is the environment after this
declaration?

9/12/17 36

‘ New Bindings Hide Old

/| p,=4{b—5,a— 1, test — false}
let test = 3.7;;

= What is the environment after this
declaration?

/| p;={test—=3.7,a—-1,b—5}

9/12/17 37

‘ Environments

test =2 3.7
b=>5

9/12/17 38

4

Now it's your turn

You should be able to do WA1
Problem 1, parts (* 1 *) and (* 2 *)

9/12/17 39

* Local Variable Creation

test > 3.7
L—a>1
b>5

/] p; ={test=3.7,a—-1,b—=5

s test > 3.7
b,, a1 *

b>5

-:int=5

9/12/17 40

’ Local let binding

/] ps=A{test=3.7,a—=1,b—
#letc=

letb =&+ a
Il pg=4b—2}+p;
// ={b—2,test - 3.7,a— 1}

inb *b;;
valc:int=4
// p;={c—4,test-3.7,a—1,b—-5}
#Db;;
-:int=5

a1 test > 3.7
- b>5

9/12/17 4

ﬂcal let binding

/] ps={test=3.7,a—=1,b—

#letc=
let b =4

/| pg=1{b—2

Y+ s

valc:int=4

/l p;={c—4,test=3.7,a—1,b—5}
#b;;

-:int=5

9/12/17 2

a1 test>37

valc:int=4 c34 b5

// p;={c—=4,test-3.7,a—-1,b—5}
#b;;
-:1int=5

9/12/17 3

+

Now it’s your turn

You should be able to do WA1
Problem 1, parts (* 3 *) and (* 4 *)

9/12/17 44

* Booleans (aka Truth Values)

true;;

- : bool = true

false;;

- : bool = false

/| p={c—4,test—=3.7,a—1,b—5}
if b > a then 25 else 0;;

-:int =25

9/12/17 45

* Booleans and Short-Circuit Evaluation

#3>188&4>6;;

- : bool = false

#3>11(|4>6;;

- : bool = true

(print_string "Hi\n"; 3> 1) || 4 > 6;;
Hi

- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

not (4 > 6);;

- : bool = true

9/12/17 46

+

Now it's your turn

You should be able to do WA1
Problem 1, part (* 5 *)

9/12/17 o

*Tuples as Values

// [)7={C4>4,teSt4>3.7, 31025
a—1 b‘>5} test = 3.
! c>4
#let's = (5,"hi" 3.2);;

val s : int * string * float = (5, "hi", 3.2)

Il pg =A{s —= (5, "hi", 3.2),
c— 4, test - 3.7,
a—1,b—5}

>5
test > 3.7
c>4

9/12/17 48

iPattern Matching with Tuples

/ pg=A{s— (5 "hi", 3.2), a>1 025
c— 4, test — 3.7,
a—1b—5}

let (a,b,c) =s;; (* (a,b,c)is a pattern *

vala:int=5

val b : string = "hi"

val ¢ : float = 3.2

let x = 2, 9.3;; (* tuples don't require pa

Ocaml *) b “hi" test> 37

a5
. s (5,°hi", 3.2) ¢ D32
val x : int * float = (2, 9.3) x> (2,9.3)
9/12/17 4

test > 3.7
c>4

s (5,"h", 3.2)

3 “hir
test > 3.7

s (5,hi",32) ¢ >3

iNested Tuples

(*Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

val p :int *int *int = (1, 4, 62)

val st : string = "bye"

9/12/17 50

4

Now it's your turn

You should be able to do WA1
Problem 1, part (* 6 *)

9/12/17 51

* Functions

let plus_two n =n + 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int=19

9/12/17 52

iFunctions

let plus_two n=n + 2;;

plus_two 17;;
-:int=19

9/12/17 53

!‘ Nameless Functions (aka Lambda Terms)

funn->n+2;;

(funn->n+2)17;;

-:int=19‘/ Mﬂ

9/12/17 54

iFunctions

let plus_two n =n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-:int =19

let plus_two = funn->n + 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

-:int =16

|First definition syntactic sugar for second|

9/12/17 55

iUsing a nameless function

(funx->x*3)5;; (* An application *)

-:int =15

((funy->y +.2.0), (funz->2z*3));;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

9/12/17 56

* Values fixed at declaration time

#letx = 12;;_>
val x:int=12

let plus_x yr=\y + X;;
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

9/12/17 57

* Values fixed at declaration time

#letx =12;;

val x :int =12

let plus_ xy =y + X;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int=15

9/12/17 58

iValues fixed at declaration time

letx =7;; (* New declaration, not an
update *)
valx:int=7

plus_x 3;;

What is the result this time?

9/12/17 59

‘ Values fixed at declaration time

#letx =7;; (* New declarati
update *)
valx:int=7

| What is the result this time?

on, not an

9/12/17 60

‘ Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

valx:int=7

plus_x 3;;
-rint=15

9/12/17 61

‘ Question

= Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

= Answer: a closure

9/12/17 62

i Save the Environment!

= A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

f — < (v1,..,vn) — exp, ps >

= Where ps is the environment in effect when f
is defined (if f is a simple function)

9/12/17 63

i Closure for plus_x

= When plus_x was defined, had environment:

Pplus_x = L X =12, ..}
= Recall: let plus_xy =y + x

is really let plus_x =funy ->vy + x
= Closure for funy -> vy + x:
<Y =Y+ X Pplus_x >
= Environment just after plus_x defined:

{plus_x = <y =y +x, Pplus_x >} + Pplus_x

9/12/17 64

+

Now it's your turn

You should be able to do WA1
Problem 1, parts (* 7 *) and (* 8 *)

9/12/17 65

‘ Evaluation of Application of plus_x;;

= Have environment:
p={plus_x—=<y—-y+x, Pplus_x 7 -+ 1
y—3, ..}
where Pplus x = x—=12,..,y—=24, ..}
= Eval (plus_xy, p) rewrites to
= App (Eval(plus_x, p) , Eval(y, p)) rewrites to
= App (<y = Y + X, Pplus x > 3) rewrites to
m Eval (y + x, {y = 3} +pp|us_x) rewrites to
= Eval (3 + 12, ppys x) = 15

9/12/17 66

iFunctions with more than one argument

letadd_threexyz=x+y + z;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
valt:int=11
let add_three =
funx-> (funy-> (funz->x+vy+2);
val add_three : int -> int -> int -> int = <fun>

|Again, first syntactic sugar for second |

9/12/17 67

iPartiaI application of functions

|let add_three x y z = X +y + 7;;

let h = add_three 5 4;;
val h :int -> int = <fun>
#h3;;

-rint =12

#h7;

-:int=16

9/12/17 68

* Functions as arguments

let thrice f x = f (f (f x));;

val thrice : (‘a -> 'a) -> 'a-> 'a = <fun>
let g = thrice plus_two;;

val g :int-> int = <fun>

#94;;

-:int =10

thrice (fun s -> "Hil " ~ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

9/12/17 69

* Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-rint=7

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-rint *int = (3, 3)

double "hi";;

- : string * string = ("hi", "hi")

9/12/17 70

iMatch Expressions

let triple_to_pair triple =

*Each clause: pattern on
left, expression on right

match triple
with (0, %, y) -> (X, Y)

| (Xr OI Y) -> (XI Y)
Xy)= (XY *Use first matching clause

*Each x, y has scope of
only its clause

val triple_to_pair : int * int * int -> int * int =
<fun>

9/12/17 71

‘ Closure for plus_pair

= Assume p,s nair Was the environment just
before plus_pair defined

= Closure for plus_pair:
<(n,m) - n+m, Pplus_pair™>
= Environment just after plus_pair defined:
{plus_pair — <(n,m) = n +m, pys pair >+

* Pplus_pair

9/12/17 72

