
MP 5 – Working with ADTs
CS 421 – Fall 2014

Revision 1.0

Assigned Sep 23, 2014
Due Sep 30, 2014 23:59
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Caution
This assignment can appear quite complicated at first. It is essential that you understand how all the code you will
write will eventually work together. Please read through all of the instructions and the given code thoroughly before
you start, so you have some idea of the big picture.

3 Objectives
Your objectives are:

• Constructing algebraic data types

• Deconstructing algebraic data types

• Continuation passing style transformations

4 Background
Throughout this MP we will be working with a (very) simple functional language. It is the seed of the language with
which we will be working on MPs throughout the rest of this semester. In this MP, instead of writing our programs in
text files and parsing them, we will represent the structure of our programs via terms made from a set of five algebraic
data types.

5 Given Code
This semester the language for which we shall build an interpreter, which we call PicoML, is mainly a simplification of
OCaml. In this assignment we shall build a translator from abstract syntax for PicoML expressions to abstract syntax
for a variant that enforces Continuation Passing Style. The file mp5common.cmo contains compiled code to support
your construction of this translator. Its contents are described here.

1



5.1 OCaml Types for PicoML AST
Expressions in PicoML are mostly a subset of expressions in OCaml. The Abstract Syntax Trees for PicoML expres-
sions are given by the following OCaml type:

type exp = (* Exceptions will be added in later MPs *)
| VarExp of string (* variables *)
| ConstExp of const (* constants *)
| MonOpAppExp of mon_op * exp (* % exp1

where % is a builtin monadic operator *)
| BinOpAppExp of bin_op * exp * exp (* exp1 % exp2

where % is a builtin binary operator *)
| IfExp of exp * exp * exp (* if exp1 then exp2 else exp3 *)
| AppExp of exp * exp (* exp1 exp2 *)
| FunExp of string * exp (* fun x -> exp1 *)
| LetInExp of string * exp * exp (* let x = exp1 in exp2 *)
| LetRecInExp of string * string * exp * exp

(* let rec f x = exp1 in exp2 *)

This type makes use of the auxiliary types:

type const =
BoolConst of bool (* for true and false *)

| IntConst of int (* 0,1,2, ... *)
| FloatConst of float (* 2.1, 3.0, 5.975, ... *)
| StringConst of string (* "a", "hi there", ... *)
| NilConst (* [ ] *)
| UnitConst (* ( ) *)

for representing the constants. The mon op type represents monomorphic unary operators in PicoML.

type mon_op =
IntNegOp (* integer negation *)

| HdOp (* hd *)
| TlOp (* tl *)
| FstOp (* fst *)
| SndOp (* snd *)

The primitive binary operators are given by the Ocaml data type bin op.

type bin_op =
IntPlusOp (* _ + _ *)

| IntMinusOp (* _ - _ *)
| IntTimesOp (* _ * _ *)
| IntDivOp (* _ / _ *)
| FloatPlusOp (* _ +. _ *)
| FloatMinusOp (* _ -. _ *)
| FloatTimesOp (* _ *. _ *)
| FloatDivOp (* _ /. _ *)
| ConcatOp (* _ ˆ _ *)
| ConsOp (* _ :: _ *)
| CommaOp (* _ , _ *)
| EqOp (* _ = _ *)
| GreaterOp (* _ > _ *)

Any of these types may be expanded in future MPs in order to enrich the language.

2



Most of the constructors of exp should be self-explanatory. Names of constants are represented by the type
const. Names of variables are represented by strings. The constructors that take string arguments (VarExp,
FunExp and LetInExp) use the strings to represent names of variables that they bind. BinOpAppExp takes the
binary operator, represented by the type bin op, together with two operands. Similarly, MonOpAppExp takes the
unary operator of the mon op type and an operand. IfExp is for if then else expressons, FunExp is for
function expressions, and AppExp is for the application of one expression to another. LetInExp is for introducing
local bindings in expressions. PicoML differs from OCaml in not overloading the keyword let for global declarations
and local bindings within an expression. PicoML only uses let in end for the latter.

There are companion functions string of exp, and print exp for viewing expressions in a more readable
form.

5.2 OCaml Types for CPS transformation type
In addition to having abstract syntax trees for the expressions of PicoML, we need to have abstract syntax trees for the
type of continuations and expressions in CPS.

type cps_cont =
External

| ContVarCPS of int (* _ki *)
| FnContCPS of string * exp_cps (* FN x -> exp_cps *)

and exp_cps =
VarCPS of cps_cont * string (* k x *)

| ConstCPS of cps_cont * const (* k c *)
| MonOpAppCPS of cps_cont * mon_op * string (* k (% x) *)
| BinOpAppCPS of cps_cont * bin_op * string * string (* k (x % y) *)
| IfCPS of string * exp_cps * exp_cps (* IF x THEN exp_cps1 ELSE exp_cps2 *)
| AppCPS of cps_cont * string * string (* x y k *)
| FunCPS of cps_cont * string * int * exp_cps (* k (FUN x _ki -> [[exp]]_ki) *)
| FixCPS of cps_cont * string * string * int * exp_cps

(* k (FIX f. FUN x _ki -> [[exp]]_ki) *)

Each contructor (except FixCPS) in the type exp cps corresponds to one in the direct style represention type
exp. You will note that all decalarations are now gone. Also you will note that every construct except IfCPS takes
an additional argument of cps cont for the continuation to recieve the result of the expression immediately being
constructed. With IfCPS, this continuation is missing because it is burried one step down in each of the branches. It is
also worth noting that, with the exception of IfCPS and FunCPS, where we had exp arguments before, now we have
only the names of variables. This reflects that fact that in CPS, before you express an operation to be preformed, you
must first compute, and store the values of all the components of that operation (with the exception of IfCPS, which
must wait until it tests its boolean guard before touching either of its branches, and FunCPS, which must protect
its function body from being executed until it is applied). The augmentation of the constructors with a place for a
continuation, and the replacment of general expression arguments by variable arguments are the changes necessary to
guarantee that terms built in this type represent expressions in CPS.

When transforming a function into CPS, it is necessary to expand the arguments to the function to include one that
is for passing the continuation to it. We represent this variable by an integer rather than a string. It really is a different
type of variable because it is always internally generated and it is to supply a continuation and not an expression.
When transforming an expression, we will taken in and hand back an integer giving the next integer available to be
used for a continuation variable.

3



6 Problems
The problems below have sample executions that suggest how to write answers. Students have to use the same function
name, but the name and number of the parameters that follow the function name need not be the same as the ones we
give. That is, the students are free to choose different names for the arguments to the functions from the ones given in
the example execution. You may use any library functions you wish.

1. (4 pts) Write a function import list: (int * int) list -> exp, that takes a list of pairs and con-
verts it into an expression in our language that is equivalent to it.

# let rec import_list lst = ...;;
val import_list : (int * int) list -> Mp5common.exp = <fun>
# import_list [(7,1);(4,2);(6,3)];;
- : Mp5common.exp =
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 7), ConstExp (IntConst 1)),
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 4), ConstExp (IntConst 2)),
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst)))

2. (4 pts) Write a term in our language (an abstract syntax tree) that represents the function declaration that imple-
ments the following PicoML function pair sum (which is basically the same function as the one by this name
from MP2):

let rec pair_sums lst =
if lst = [] then []
else let x = (hd lst) in (fst x + snd x) :: (pair_sums (tl lst))

in pair_sum [(7,1);(4,2);(6,3)]

# let pair_sum = ...
val pair_sum : exp =
# string_of_exp pair_sum;;
- : string =
"let rec pair_sum lst = if lst = [] then [] else let x = hd lst
in ((fst x) + (snd x)) :: (pair_sum (tl lst))
in pair_sum (((7,1)) :: (((4,2)) :: (((6,3)) :: [])))"

You can test out your implementation by evaluating it as follows:

# #load "mp5common.cmo";;
# #load "mp5eval.cmo";;
# open Mp5eval;;
# open Mp5common;;
# #use "mp5.ml";;
# eval_exp (pair_sum, []);
- : Mp5eval.value = ListVal [IntVal 8; IntVal 6; IntVal 9]

4



3. (5 pts) Write a function cal max exp height : exp -> int that counts the maximum height of the input
exp by viewing the exp or dec as a tree structure. Assume that VarExp and ConstExp have height 1.

# let rec cal_max_exp_height exp = ...
val cal_max_exp_height : Mp5common.exp -> int = <fun>
# cal_max_exp_height (BinOpAppExp (ConsOp,

BinOpAppExp (CommaOp, ConstExp (IntConst 7), ConstExp (IntConst 1)),
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 4), ConstExp (IntConst 2)),
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst))));;

- : int = 5

4. (20 pts total) A free variable in an expression is a variable that isn’t bound in that expression. In our setting, free
variables are the variables that had to be given a value previously for the expression to be able to be evaluated. As
an example, in (let val x = y in fun s -> a x s end) the variables a and y are free but x and s
are not. Notice that to understand the free variables in the previous example, we also need to to know for the inner
declaration both the free variables of the expression in it, but also the variables that are being bound by it.

Write a function freeVarsInExp : exp -> string list that calculates the names of the free vari-
ables of an expression (where we represent sets via lists). The grader will cope with answers that have duplicate
entries or the result list in a different order than our reference solution.

To assist you in writing this function, we have broken the problem down into groups of similar cases. We also give
the precise mathematical definition (in cases) for a function ' calculating the free variables of an expression e.

In mp5common.ml, we have supplied you with a related pair of functions freeVarsInContCPS : cps cont
-> string list and freeVarsInExpCPS : exp cps -> string list for calculating the free vari-
ables in a continuation and CPS-transformed expression respectively. You should feel free to examine these defi-
nitions for inspiration in writing the code for this problem.

a. (2 pts.) We can define a function '(e) that calculates the free variables of an expression, where the expression
is a variable v, or a constant c by

'(v) = {v}
'(c) = ;

The function freeVarsInExp should behave in a similar manner, returning no names for a constant, and
the singleton name of the variable for a variable. Write the appropriate clause for freeVarsInExp to
return the free variables of expressions that are constants or variables.

# let rec freeVarsInExp = ... ;;
val freeVarsInExp : Mp5common.exp -> string list = <fun>
# freeVarsInExp (VarExp "x");;
- : string list = ["x"]

b. (8 pts.) The set of free variables of an expression that is at the top-most level an if-then-else, the use of a
unary or binary operator, or the application of one expression to another is just the union of the free variables

5



of all the immediate subexpressions.

'(if e1 then e2 else e3) = '(e1) [ '(e2) [ '(e3)

'(�e) = '(e) For unary operator �
'(e1 � e2) = '(e1) [ '(e2) For binary operator �
'(e1 e2) = '(e1) [ '(e2)

Write the clauses for freeVarsInExp for expressions that are top-most in if-then-else, the use of a unary
or binary operator, or the application of one expression to another.

# freeVarsInExp (IfExp(ConstExp (BoolConst true), VarExp "x", VarExp "y"));;
- : string list = ["x"; "y"]

c. (3 pts.) The free variables of a function expression are all the free variables in the body of the expression
except the variable that is the formal parameter. Any occurrence of that variable in the body of the function
is bound by the formal parameter, and not free.

'(fun x -> e) = '(e)� {x}

Add clauses to freeVarsInExp to compute the free variables of a function expression.

# freeVarsInExp (FunExp("x", VarExp "x"));;
- : string list = []

Note: You can implement set subtraction using the library function List.filter : (’a -> bool)
-> ’a list -> ’a list.

d. (3 pts.) The free variables of a let-expression are restricted by the variable being locally declared, and
hence bound. In let x = e1 in e2 end the x in the let part binds any occurrence of x in e2, but not
in e1.

'(let x = e1 in e2) = '(e1) [ ('(e2)� {x})

Add the clause to freeVarsInExp to compute the free variables of let-expressions.

# freeVarsInExp (LetInExp("x", VarExp "y", VarExp "x"));;
- : string list = ["y"]

e. (4 pts) The most complicated case for computing the free variables of an expression is that of a let rec-
expression. In let rec-expressions, there are two bindings taking place, and they have two different
scopes. In let rec f x = e1 in e2), the f binds all the occurrences of f in both e1 and e2, but the x

only binds occurrences of x in e1; if x is a free variable of e2 it will be a free variable of let rec f x =
e1 in e2).

'(let rec f x = e1 in e2) = ('(e1)� {f, x}) [ ('(e2)� {f})

Write the clause for freeVarsInExp for let rec-expressions.

# freeVarsInExp (LetRecInExp("f","x",AppExp(VarExp "f",VarExp "x"),
AppExp(VarExp "f",VarExp "y")));;

- : string list = ["y"]

5. (28 pts total) In MP4 you converted some expressions to use Continuation-Passing Style (CPS), and in HW4 you
worked with the recursive algorithm for transforming code to CPS by hand. In this section you will build a function

6



cps exp : exp -> cps cont -> int -> exp cps * int to automatically transform expressions
in our language into CPS. The int argument in each function represents the next continuation variable available
for use. Each time you use this integer to create a new continuation variable, you should increment this integer and
return it as part of your result.
Mathematically we represent CPS transformation by the functions [[e]]



, which calculates the CPS form of an
expression e when passed the continuation , where  does not represent a programming language variable, but
rather a complex expression describing the current continuation for e.
The defining equations of this function are given below. In these rules f , x, v and vi represent variables in our
programming language, k is a continuation variable, c is a constant, e and ei are expressions, t is a transformed
expression and d a declaration. The variables f and x will represent variables that were already presented in the
expression to be transformed. The variables v and vi are used to represent newly introduced variables used to pass
a value from the previous computation forward into the current continuation. The variable k is used to represent a
variable (such as a formal parameter to a function) to be instantiated by an as yet unknown continuation.
By v being fresh for an expression e, we mean that v needs to be some variable that is NOT free in e. In
mp5common.ml, we have supplied a function freshFor : string list -> string that, when given
a list of names, will generate a name that is not in the list. When implementing cps exp, the names you use for
these “fresh” variables do not have be the same as the ones we use, but they do have to satisfy the required freshness
constraint.

a. (4 pts) The CPS transformation of a variable or constant expression just applies the continuation to the
variable or constant, since during execution, when this point in the code is reached, both variables and
constants are already fully evaluated (except for being looked up).

[[v]]


=  v

[[c]]


=  c

The code for the function cps exp should behave is a similar manner, creating the application of the con-
tinuation to the variable or constant. Add code to cps exp to implement the CPS-transformation of an
expression that is a constant or variable.
# string_of_exp_cps (fst (cps_exp (VarExp "x") (ContVarCPS 0) 1));;
- : string = "_k0 x"

b. (3 pts) Each CPS transformation should make explicit the order of evaluation of each subexpression. For
if-then-else expressions, the first thing to be done is to evaluate the boolean guard. The resulting boolean
value needs to be passed to an if-then-else that will choose a branch. When the boolean value is true, we need
to evaluate the transformed then-branch, which will pass its value to the final continuation for the if-then-else
expression. Similarly, when the boolean value is false we need to evaluate the transformed else-branch, which
will pass its value to the final continuation for the if-then-else expression. To accomplish this, we recursively
CPS-transform e1 with the continuation with a formal parameter v that is fresh for e2, e3 and , where, based
on the value of v, the continuation chooses either the CPS-transform of e2 with the original continuation ,
or the CPS-transform of e3, again with the original continuation .

[[if e1 then e2 else e3]] = [[e1]]FN v -> IF v THEN [[e2]] ELSE [[e3]]

Where v is fresh for e2, e3, and 

With FN v -> IF v THEN [[e2]] ELSE [[e3]] we are creating a new continutation from our old. This
is not a function at the level of expressions, but rather at the level of continuations, and, as a result, should
use the constructor FnContCPS.
Add a clause to cps exp for the case for if-then-else operators.

7



# string_of_exp_cps (fst (cps_exp (IfExp (VarExp "b", ConstExp (IntConst 2),
ConstExp (IntConst 5)))

(ContVarCPS 0) 1));;
- : string = "(FN a -> IF a THEN _k0 2 ELSE _k0 5) b"

c. (3 pts) The CPS transformation for application mirrors its evaluation order. In PicoML, we will uniformly
use right-to-left evaluation. Therefore, to evaluate an application, first evaluate e2 to a value then evaluate
the function, e1, to a closure, and finally, evaluate the application of the closure to the value. To transform
the application of e1 to e2, we create a new continuation that takes the result of e2 and binds it to v2, then
evaluates e1 and binds it to v2, then finally, applies v1 to v2 and, since the CPS transformation makes all
functions take a continuation, it is also applied to the current continuation . This is the continuation that is
used in transforming e2. Implement this rule:

[[e1 e2]] = [[e2]]FN v2 -> [[e1]]FN v1 -> v1 v2 

Where v2 is fresh for e1 and 

v1 is fresh for v2 and 

# string_of_exp_cps (fst (cps_exp (AppExp (VarExp "f", VarExp "x"))
(ContVarCPS 0) 1));;

- : string = "(FN a -> (FN b -> (b a _k0)) f) x"

d. (3 pts) The CPS transformation for a binary operator mirrors its evaluation order. It first evaluates its second
argument, then its first before evaluating the binary operator applied to those two values. We create a new
continuation that takes the result of the second argument, e2, binds it to v2 then evaluates the first argument,
e1, and binds that result to v1. As a last step it applies the current continuation to the result of v1 � v2.
Implement the following rule.

[[e1 � e2]] = [[e2]]FN v2 -> [[e1]]FN v1 ->  (v1 � v2)
Where v2 is fresh for e1 and 

v1 is fresh for , and v2

# string_of_exp_cps (fst (cps_exp (BinOpAppExp
(IntPlusOp, ConstExp(IntConst 5),

ConstExp(IntConst 1)))
(ContVarCPS 3) 4));;

- : string = "(FN a -> (FN b -> _k3(b + a)) 5) 1"

e. (3 pts) The CPS transformation for a unary operator mirrors its evaluation order. It first evaluates the argument
of the operator and then applies the continuation to the result of applying that operator to the value. Thus
we create a continuation that takes the result of evaluating the argument, e, and binds it to v then applies the
continuation to the result of �v. Implement the following rule.

[[�e]]


= [[e]]FN v ->  (�v) Where v is fresh for 

# string_of_exp_cps (fst (cps_exp (MonOpAppExp (HdOp, ConstExp NilConst))
(ContVarCPS 0) 1));;

- : string = "(FN a -> _k0(hd a)) []"

f. (3 pts) A function expression by itself does not get evaluated (well, it gets turned into a closure), so it needs to
be handed to the continuation directly, except that, when it eventually gets applied, it will need to additionally
take a continuation as another argument, and its body will need to have been transformed with respect to this
additional argument. Therefore, we need to choose a new continuation variable k to be the formal parameter
for passing a continuation into the function. Then, we need to transform the body with k as its continuation,
and put it inside a continuation function with the same original formal parameter together with k. The original

8

Elsa Gunter
let v = freshFor (freeVarsInContCSP k) in

Elsa Gunter

Elsa Gunter



continuation  is then applied to the result.

[[fun x -> e]]


=  (FUN x k -> [[e]]
k

) Where k is new (fresh for )

The syntax for a function in PicoML, as in OCaml is (fun -> ). Write the clause for the case for
functions.

# string_of_exp_cps (fst (cps_exp (FunExp ("x", VarExp "x"))c
(ContVarCPS 0) 1));;

- : string = "_k0 (FUN x _k1 -> _k1 x)"

g. (3 pts) A (let x = e1 in e2) expression first evaluates the expression e1 generating a collection of local
bindings, and then evaluates e2 in the context of those new bindings. Note that, in order to transform e2

into CPS, we already have the necessary continuation  because e2 computes the value to be given as the
final result. To transform the (let x = e1 in e2) expression, we transform e2 with respect to our current
continuation , and then give this transformed expression to our procedure for transforming declarations.
Implement the following rule.

[[let x = e1 in e2]] = [[e1]]FN x -> [[e2]]

# string_of_exp_cps (fst (cps_exp (LetInExp ("x", ConstExp(IntConst 2),
VarExp "x"))

(ContVarCPS 0) 1));;
- : string = "(FN x -> _k0 x) 2"

6.1 Extra Credit

h. (3 pts) In PicoML, the only expressions that can be declared with let rec are functions. A (let rec
f x = e1 in e2) expression creates a recursive function binding for f and with formal parameter x and
body e1. The binding for f is then available for the evaluation of e2. When e1 is evaluated in the context of
a function call in e2, the environment for e1 will need to be updated with this binding. Since we require let
rec declarations to bind identifiers to functions, we do the CPS transform for this declaration in a fairly
similar way. We need to make up a new continuation variable and transform the body with respect to that,
and paramaterize by that continuation varaible. We need to convert the CPS transformed expression waiting
for the binding into a continuation taking a value for f . The main difference at the end is that we wrap it all
up with a constructor representing a fixed-point operator. Implement the following rule.

[[let rec f x = e1 in e2]] = (FN f -> [[e2]])(µ f. FUN x k -> [[e1]]
k

)

Where k is new (fresh for ).

# string_of_exp_cps (fst (cps_exp (LetRecInExp ("f", "x",VarExp "x",
ConstExp (IntConst 4)))

(ContVarCPS 1) 2));;
- : string = "(FN f -> _k1 4)(FIX f. FUN x _k2 -> _k2 x)"

9


	Change Log
	Caution
	Objectives
	Background
	Given Code
	OCaml Types for PicoML AST
	OCaml Types for CPS transformation type

	Problems
	Extra Credit


