
MP 4 – Higher-order Functions and
Continuation-Passing Style

CS 421 – Fall 2014
Revision 1.1

Assigned September 16, 2014
Due September 23, 2014 23:59
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

1.1 Removed the subsection Using Continuations to Alter Control Flow

2 Objectives and Background
The purpose of this MP is to:

• Help student master higher-order functions.

• Help the student learn the basics of continuation-passing style, or CPS, and CPS transformation. Next week, you
will be using your knowledge learned from this MP to construct a general-purpose algorithm for transforming
code in direct style into continuation-passing style.

3 Instructions
Instructions for solving the problems related to higher-order functions are the same as instruction for MP3.

The problems related to CPS transformation are all similar to the problems in MP2 and MP3. The difference is that
you must implement each of these function in continuation-passing style. In some cases, you must first write a function
in direct style (according to the problem specification), then transform the function definition into continuation-passing
style.

The problems below have sample executions that suggest how to write answers. Students have to use the same
function name, but the name of the parameters that follow the function name need not be duplicated. That is, the
students are free to choose different names for the arguments to the functions from the ones given in the example
execution. We also will use let rec to begin the definition of some of the functions that are allowed to use recursion.
You are not required to start your code with let rec. Similarly, if you are not prohibited from using explicit
recursion in a given problem, you may change any function definition from starting with just let to starting with let
rec.

For all these problems, you are allowed to write your own auxiliary functions, either internally to the function
being defined or externally as separate functions. All such helper functions must satisfy any coding restrictions (such
as not using explicit recursion) as the main function being defined for the problem must satisfy.

Here is a list of the strict requirements for the assignment.

• The function name must be the same as the one provided.

1

• The type of parameters must be the same as the parameters shown in sample execution.

• Students must comply with any special restrictions for each problem. For several of the problems, you will be
required to write a function in direct style, possibly with some restrictions, as you would have in MP2 or MP3,
and then transform the code you wrote in continuation-passing style.

4 Problems

4.1 Higher Order Functions
For problems 1 through 4, you will be supplying arguments to the higher-order functions List.map, List.fold right,
and List.fold left. You should not need to use explicit recursion for any of these problems.

1. (4 pts) Write a function pair sums map : (int * int) list -> int list that computes the same
results as defined in Problem 9 from MP3. There should be no use of recursion or library functions except
List.map in the solution to this problem

let pair_sums_map l = ...;
val pair_sums_map : (int * int) list -> int list = <fun>
pair_sums_map [(1,6);(3,1);(3,2)];;
- : int list = [7;4;5]

2. (5 pts) Write a value odd sum base : int and function odd sum rec : (int -> int -> int
such that (fun l -> List.fold right odd sum rec l odd sum base) computes the same solu-
tion as odd sum defined in Problem 8 from MP3. There should be no use of recursion or library functions in
the solution to this problem.

let odd_sum_base = ...;;
val odd_sum_base : int = ...
let odd_sum_rec = ...;;
val odd_sum_rec : int -> int -> int = <fun>
let odd_sum l = List.fold_right odd_sum_rec l odd_sum_base;;
val odd_sum : int list -> int = <fun>
odd_sum [1;2;3];;
- : int = 4

3. (5 pts) Write a value count element base : int and function count element rec : ’a -> int
-> ’a -> int such that (fun l -> fun m -> List.fold left (count element rec m)
count element base l) computes the same results as count element defined in Problem 10 from MP3.
There should be no use of recursion or library functions in the solution to this problem.

let count_element_base = ...;;
val count_element_base : int = ...
let count_element_rec = ...;;
val count_element_rec : ’a -> int -> ’a -> int = <fun>
let count_element l m = List.fold_left (count_element_rec m) count_element_base l;;
val count_element : ’a list -> ’a -> int = <fun>
count_element [0;1;3;2;1;1;3] 3;;
- : int = 2

2

4.2 Higher Order Functions - Extra Credit
4. (3 pts) Write a function apply even odd : ’a list -> (’a -> ’b) -> (’a -> ’b) -> ’b

list such that apply even odd [x0; x1; x2; x3; ...] f g returns a list [f x0; g x1; f
x2; g x3; ...]. The function is required to use (only) forward recursion (no other form of recursion). You
may not use any library functions.

let rec apply_even_odd l f g = ...;;
val apply_even_odd : ’a list -> (’a -> ’b) -> (’a -> ’b) -> ’b list = <fun>
apply_even_odd [1;2;3] (fun x -> x+1) (fun x -> x - 1);;
- : int list = [2; 1; 4];;

5 Continuation Passing Style
These exercises are designed to give you a feel for continuation-passing style. A function that is written in continuation-
passing style does not return once it has finished computing. Instead, it calls another function (the continuation) with
the result of the computation. Here is a small example:

let report x =
print_string "Result: ";
print_int x;
print_newline();;

val report : int -> unit = <fun>

let inck i k = k (i+1)
val inck : int -> (int -> ’a) -> ’a = <fun>

The inck function takes an integer and a continuation. After adding 1 to the integer, it passes the result to its
continuation.

inck 3 report;;
Result: 4
- : unit = ()
inck 3 inck report;;
Result: 5
- : unit = ()

In line 1, inck increments 3 to be 4, and then passes the 4 to report. In line 4, the first inck adds 1 to 3, and
passes the resulting 4 to the second inck, which then adds 1 to 4, and passes the resulting 5 to report.

5.1 Transforming Primitive Operations
Primitive operations are “transformed” into functions that take the arguments of the original operation and a continu-
ation, and apply the continuation to the result of applying the primitive operation on its arguments.

In the helper module Mp4common, we have given you a testing continuation and a few low-level functions in
continuation-passing style. These are as follows:

val report : int -> unit = <fun>
val addk : int -> int -> (int -> ’a) -> ’a = <fun>
val subk : int -> int -> (int -> ’a) -> ’a = <fun>
val float_addk : float -> float -> (float -> ’a) -> ’a = <fun>
val float_divk : float -> float -> (float -> ’a) -> ’a = <fun>
val pairk : ’a -> ’b -> (’a * ’b -> ’c) -> ’c = <fun>

3

You are being asked first to extend that set of functions in continuation-passing style.

5. (8pts) Write the following low-level functions in continuation-passing style. A description of what each function
should do follows:

• divk divides the first integer by the second;

• modk divides the first integer by the second and returns the remainder;

• float subk subtracts the second float from the first;

• float mulk multiplies two floats;

• catk concatenates two strings;

• consk creates a new list by adding an element at the front of a list;

• leqk determines if the first argument is less than or equal to the second argument; and

• eqk determines if the two arguments are equal.

let divk n m k = ...;;
val divk : int -> int -> (int -> ’a) -> ’a = <fun>
let modk n m k = ...;;
val modk : int -> int -> (int -> ’a) -> ’a = <fun>
let float_subk a b k = ...;;
val float_subk : float -> float -> (float -> ’a) -> ’a = <fun>
let float_mulk a b k = ...;;
val float_mulk : float -> float -> (float -> ’a) -> ’a = <fun>
let catk str1 str2 k = ...;;
val catk : string -> string -> (string -> ’a) -> ’a = <fun>
let consk e l k = ...;;
val consk : ’a -> ’a list -> (’a list -> ’b) -> ’b = <fun>
let leqk x y k = ...;;
val leqk : ’a -> ’a -> (bool -> ’b) -> ’b = <fun>
let eqk x y k = ...;;
val eqk : ’a -> ’a -> (bool -> ’b) -> ’b = <fun>

divk 12 5 report;;
Result: 2
- : unit = ()
catk "hello " "world" (fun x -> x);;
- : string = "hello world"
float_subk 3.0 1.0

(fun x -> float_mulk x 2.0
(fun y -> (print_string "Result:"; print_float y; print_newline())));;

Result:4.
- : unit = ()
leqk 2 1 (fun b -> (report (if b then 1 else 0)));;
Result: 0
- : unit = ()

5.2 Nesting Continuations
let add3k a b c k =

addk a b (fun ab -> addk ab c k);;

4

val add3k : int -> int -> int -> (int -> ’a) -> ’a = <fun>
add3k 1 2 3 report;;
Result: 6
- : unit = ()

We needed to add three numbers together, but addk itself only adds two numbers. On line 2, we give the first call
to addk a function that saves the sum of a and b in the variable ab. Then this function adds ab to c and passes its
result to the continuation k.

6. (5 pts) Using addk (defined in MP4common and the lectures notes) and mulk (defined above) as helper functions,
write a function polyk, which takes on integer argument x and “returns” x4+x+1. You may only use the addk
and mulk operators to do the arithmetic. The order of evaluation of operations must be as follows: first compute
x2, then using its result with one more multiplication, compute x4. Next, compute x + 1, and finally compute
x4 + x+ 1.

let poly x k = ...;;
val poly : int -> (int -> ’a) -> ’a = <fun>
poly 2 report;;
Result: 19
- : unit = ()

7. (8 pts) Write a function distributek that takes, as the first two arguments, two functions f and g, and, as third
and fourth arguments, values x and y, and “returns” g(f(x))(f(y)) (distributing application of f over x and y,
before applying g to the results). The order of computation is f(x), then f(y), then g(f(x))(f(y)) (g takes three
arguments, where the last argument is a continuation). You must write distributek in continuation-passing
style and you must assume that the functions f and g are given in the continuation-passing style.

let distributek f g x y k = ...
val distributek :

(’a -> (’b -> ’c) -> ’c) ->
(’b -> ’b -> (’d -> ’e) -> ’c) -> ’a -> ’a -> (’d -> ’e) -> ’c = <fun>

distributek inck addk 1 2 (fun x -> x);;
- : int = 5

5.3 Transforming Recursive Functions
How do we write recursive programs in CPS? Consider the following recursive function:

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

We can rewrite this making each step of computation explicit as follows:

let rec factoriale n =
let b = n = 0 in

if b then 1
else let s = n - 1 in

5

let m = factoriale s in
n * m;;

val factoriale : int -> int = <fun>
factoriale 5;;
- : int = 120

Now, to put the function into full CPS, we must make factorial take an additional argument, a continuation, to
which the result of the factorial function should be passed. When the recursive call is made to factorial, instead of it
returning a result to build the next higher factorial, it needs to take a continuation for building that next value from
its result. In addition, each intermediate computation must be converted so that it also takes a continuation. Thus the
code becomes:

let rec factorialk n k =
eqk n 0
(fun b -> if b then k 1

else subk n 1
(fun s -> factorialk s

(fun m -> timesk n m k)));;
factorialk 5 report;;
Result: 120
- : unit = ()

Notice that to make a recursive call, we needed to build an intermediate continuation capturing all the work that must
be done after the recursive call returns and before we can return the final result. If m is the result of the recursive call
in direct style (without continuations), then we need to build a continuation to:

• take the recursive value: m

• build it to the final result: n * m

• pass it to the final continuation k

Notice that this is an extension of the ”nested continuation” method.
In Problems 8 through 10 you are asked to first write a function in direct style and then transform the code into

continuation-passing style. When writing functions in continuation-passing style, all uses of functions need to take a
continuation as an argument. For example, if a problem asks you to write a function partition, then you should
define partition in direct style and partitionk in continuation-passing style. All uses of primitive operations
(e.g. +, -, *, <=, <>) should use the corresponding functions defined in Problem 5.1 or in the lecture notes. If you need
to make use of primitive operations not covered in Problem 5.1, you should include a definition of the corresponding
version that takes a continuation as an additional argument, as in Problem 5.1. In Problem 9 and 10, there must be no
use of list library functions.

8. (6 pts total)

a. (2 pts) Write a function alternate series, which takes an integer n, and computes the (partial) series
−1 + 2− 3 + . . .+ (−1)n · n and returns the result. If n ≤ 0, then return 0.

let rec alternate_series n = ...;;
val alternate_series : int -> int = <fun>
alternate_series 10;;
- : int = 5

b. (4 pts) Write the function alternate seriesk which is the CPS transformation of the code you wrote
in part a.

6

let rec alternate_seriesk n k = ...;;
val alternate_seriesk : int -> (int -> ’a) -> ’a = <fun>
alternate_seriesk 10 (fun x -> x);;
- : int = 5

9. (8 pts total)

a. (2 pts) Write a function rev iter which takes a function f (of type ’a -> unit) and a list l (of type ’a
list). If the list l has the form [a1; a2; . . . ; an], then rev iter applies f on an, then on an−1, then . . . ,
then on a1. There must be no use of list library functions.

let rec rev_iter f l = ...;;
val rev_iter : (’a -> unit) -> ’a list -> unit = <fun>
rev_iter (fun x -> print_int x) [1;2;3;4;5];;
54321- : unit = ()

b. (6 pts) Write the function rev iterk that is the CPS transformation of the code you wrote in part a. You
must assume that the function f is also transformed in continuation-passing style, that is, the type of f is not
’a -> unit, but ’a -> (unit -> ’b) -> ’b.

let rec rev_iterk f l k = ...;;
val rev_iterk : (’a -> (unit -> ’b) -> ’b) -> ’a list

-> (unit -> ’b) -> ’b = <fun>
let print_intk i k = k (print_int i);;
val print_intk : int -> (unit -> a) -> a = <fun>
rev_iterk (fun x -> fun k ->

print_intk x (fun t -> k t)) [1; 2; 3; 4; 5] (fun x -> x);;
54321- : unit = ()

10. (8 pts total)

a. (2 pts) Write a function filter which takes a list l (of type ’a list), and a predicate p (of type ’a ->
bool), and returns the list containing all the elements satisfying p. The order of the elements in the returning
list must correspond to the order in l. There must be no use of list library functions.

let rec filter l p = ...;;
val filter : ’a list -> (’a -> bool) -> ’a list = <fun>
filter [1; 2; 3; 4] (fun x -> x >= 2);;
- : int list = [2; fi3; 4]

b. (6 pts) Write a function filterk which is the CPS transformation of the code you wrote in part a. You
must assume that the predicate p is also transformed in continuation-passing style, that is, its type is not ’a
-> bool, but ’a -> (bool -> ’b) -> ’b.

let rec let rec filterk l p k = ...;;
val filterk : ’a list -> (’a -> (bool -> ’b) -> ’b)

-> (’a list -> ’b) -> ’b = <fun>
filterk [1; 2; 3; 4] (fun x -> fun k -> leqk 2 x k) (fun x -> x);;
- : int list = [2; 3; 4]

7

5.4 CPS - Extra Credit
11. (8 pts)

Write the function appk which takes a list l of functions in continuation-passing style (of type ’a -> (’a ->
’b) -> ’b), an initial value x (of type ’a) and a continuation k. If the list l is of the form [f1; . . . ; fn], then
appk evaluates f1 (f2 (. . . (fn x) . . .)) and passes the result to k. Intuitively, it evaluates fn on x, then fn−1 on
the result, then fn−2 on the second result, and so on. Your definition must be in continuation-passing style.

let rec appk l x k = ...;
val appk : (’a -> (’a -> ’b) -> ’b) list -> ’a -> (’a -> ’b) -> ’b = <fun>
appk [inck;inck;inck] 0 (fun x -> x);;
- : int = 3

8

