
HW 9 – Parse Trees, Ambiguous Grammars
and Recursive Descent Parsing

CS 421 – Fall 2014
Revision 1.0

Assigned Tuesday, October 28, 2014
Due Thursday, November 6, 2014, 23:59 PM
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Turn-In Procedure
For the main problem, answer the problem below, save your work as a PDF (either scanned if handwritten or converted
from a program), add the PDF to the subversion repository (svn add hw9-submission.pdf) and commit it
(svn commit -m "submitting hw9"). Your file should be named hw9-submission.pdf and committed
in your assignments/hw9 directory. For the extra credit problem, your answer needs to be put in a seperate file
named hw9.ml and added and committed to your assignments/hw9 directory.

3 Objectives and Background
The purpose of this HW is to test your understanding of

• BNF grammars

• Grammar disambiguation

• Parse trees

• Writing a recursive descent parser for an LL(1) grammar

Another purpose of HW9 is to provide you with experience answering non-programming written questions of the
kind you may experience on the second midterm and final.
Caution: It is strongly advised that you know how to do these problems before the second midterm.

4 Problems
1. (23 points) Consider the following grammar over the terminal alphabet {int,list, ∗, ’a, ’b, (,)} and non-

terminal alphabet {<ty>, <var>}:

< ty > ::= < var > | int | < ty > ∗ < ty > | < ty > list | (< ty >)
< var > ::= ′a | ′b

(This is a grammar for a simple language of types similar to those in OCaml.)

1

a. (9 points) Show that the above grammar is ambiguous by showing at least two distinct parse trees for the
string ” ′a list ∗ int list”

b. (9 points) Write a new grammar accepting the same language that is unambiguous, and such that the product
type constructor < ty > ∗ < ty > binds more tightly than the list type constructor < ty > list, and
such that * associates to the right.

c. (5 points) Give the parse tree for ” ′a list ∗ int list” using the grammar you gave in the previous part of
this problem.

2. (Extra Credit) (10 points) Write a recursive descent parser for the grammar you gave in part b. We have given
you the files hw9common.ml, hw9common.cmi and hw9common.cmo, which give you the datatype:

type token = INT | LIST | STAR | VAR of string | LPAR | RPAR

We have also given you the files type lex.mll, type lex.ml, type lex.cmo, and type lex.cmi.
These files give you the function Type lex.get all tokens : string -> Hw9common.token list.

You should define a type ty (and some others) that represents parse trees based on grammar you gave in Problem
1, part b, and a function parse: string -> ty option that returns Some of a parse tree for the string if
the whole string parses, or None if the string contains no lex errors but fails to fully parse.

Your answer needs to be put in a seperate file named hw9.ml and added and committed to your assignments/hw9
directory.

2

