
HW 4 – CSP Transformation; Working with
Mathematical Specifications

CS 421 – Fall 2014
Revision 1.0

Assigned Thursday, September 18, 2014
Due Thursday, September 25, 2014, 23:59pm
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Objectives and Background
The purpose of this HW is to help your understanding of:

• The basic CSP transformation algorithm

• How to use a formal mathematically recursive definition

3 Turn-In Procedure
Answer the problems below, then using your favorite tool(s), save your work as a PDF (either scanned if handwritten
or converted from a program), and commit the PDF in your your repositiory in the directory assignments/hw4.
Your file should be named hw4-submission.pdf. The command to commit this file is

svn commit -m "Turning in hw4." hw4-submission.pdf

4 Background
Throughout this HW, we will be working with a (very) simple functional language. It is a fragment of PicoML (a
fragment of OCaml), and the seed of the language that we will be using in MPs throughout the rest of this semester.
Using a mix of PicoML concrete syntax (expression constructs as you would type them in PicoML’s top-level loop)
and recursive mathematical functions, we will describe below the algorithm for CSP transformation for this fragment.
You should compare this formal definition with the description given on examples in class.

The language fragment we will work with in this assignment is given by the following Context Free Grammar:

e→ c | v | e⊕ e
| if e then e else e
| fun v -> e| e e

The symbol e ranges recursively over all expressions in PicoML, c ranges over constants, v ranges over program
variables, and ⊕ ranges over infixed binary primitive operations. This language will expand over the course of the
semester.

1

Mathematically we represent CPS transformation by the function [[e]]κ, which calculates the CPS form of an
expression e when passed the continuation κ. The symbol κ does not represent a programming language variable, but
rather a complex expression describing the current continuation for e.

The defining equations of this function are given in the subsections below. Recall that when transforming a function
into CPS, it is necessary to expand the arguments to the function to include one that is for passing the continuation
to it. We will use κ to represent a continuation that has already been calculated or given to us, and k, ki, k′ etc as
the name of variables that can be assigned continuations. We will use v, vi, v′ etc for the ordinary variables in our
program.

By v being fresh for an expression e, we mean that v needs to be some variable that is NOT in e. In MP5, you will
implement a function for selecting one, but here you are free to choose a name as you please, subject to being different
from all the other names that have already been used.

4.1 Variables, Constants, and Binary Operations
• The CPS transformation of a variable or constant expression just applies the continuation to the variable or

constant, since during execution, when this point in the code is reached, both variables and constants are already
fully evaluated (except for being looked up).

[[v]]κ = κ v

[[c]]κ = κ c

Example:
[[x]](FN y -> report y) = (FN y -> report y) x

This may be read as “load register y with the value for x, then do a procedure call to report”.

• The CPS transformation for a binary operator mirrors its evaluation order. We will use the OCaml order of
evaluation here. It first evaluates its second argument then its first before evaluating the binary operator applied
to those two values. We create a new continuation that takes the result of the second argument, e2, binds it to v2
then evaluates the first argument, e1, and binds that result to v1. As a last step it applies the current continuation
to the result of v1 ⊕ v2. This is formalized in the following rule:

[[e1 ⊕ e2]]κ = [[e2]]FN v2 -> [[e1]]FN v1 -> κ (v1 ⊕ v2)
Where

v2 is fresh for e1, and κ
v1 is fresh for κ, and v2

Example: [[x + 1]](FN w -> report w)
= [[1]](FN y -> [[x]](FN z -> (FN w -> report w) (z + y)))
= [[1]](FN y -> ((FN z -> (FN w -> report w) (z + y)) x))
= (FN y -> ((FN z -> (FN w -> report w) (z + y)) x)) 1

1. (4 pts) Compute the following CPS transformation. All parts should be transformed completely.

[[7 - y]](FN w -> report w)

2

Solution:
[[7 - y]](FN w -> report w) =

[[y]](FN a -> [[7]](FN b -> (FN w -> report w)(b - a)))

[[7]](FN b -> (FN w -> report w)(b - a)) =

(FN b -> (FN w -> report w)(b - a)) 7

[[y]](FN a -> [[7]](FN b -> (FN w -> report w)(b - a)))
=

[[y]](FN a -> (FN b -> (FN w -> report w)(b - a)) 7) =

(FN a -> (FN b -> (FN w -> report w)(b - a)) 7) y

4.2 Branching
Each CPS transformation should make explicit the order of evaluation of each subexpression. For if-then-else expres-
sions, the first thing to be done is to evaluate the boolean guard. The resulting boolean value needs to be passed to
an if-then-else that will choose a branch. When the boolean value is true, we need to evaluate the transformed then-
branch, which will pass its value to the final continuation for the if-then-else expression. Similarly, when the boolean
value is false we need to evaluate the transformed else-branch, which will pass its value to the final continuation for the
if-then-else expression. To accomplish this, we recursively CPS-transform the boolean guard e1 with the continuation
with a formal parameter v that is fresh for the then branch e2, the else branch e3 and the final continuation κ, where,
based on the value of v, the continuation chooses either the CPS-transform of e2 with the original continuation κ, or
the CPS-transform of e3, again with the original continuation κ.

[[if e1 then e2 else e3]]κ = [[e1]]FN v -> IF v THEN [[e2]]κ ELSE [[e3]]κ

Where v is fresh for e2, e3, and κ

With FN v -> IF v THEN [[e2]]κ ELSE [[e3]]κ we are creating a new continutation from our old. This is not a
function at the level of expressions, but rather at the level of continuations, hence the use of a different, albeit related,
syntax.

Example:
[[if x > 0 then 2 else 3]](FN w -> report w)
= [[x > 0]](FN y -> IF y THEN [[2]](FN w -> report w) ELSE [[3]](FN w -> report w))
= [[x > 0]](FN y -> IF y THEN (FN w -> report w) 2 ELSE (FN w -> report w) 3)
= [[0]](FN z -> [[x]](FN u -> (FN y - > IF y THEN (FN w -> report w) 2

ELSE (FN w -> report w) 3)(u > z)))
= [[0]](FN z ->(FN u -> (FN y - > IF y THEN (FN w -> report w) 2

ELSE (FN w -> report w) 3)(u > z))x)
= (FN z ->(FN u -> (FN y - > IF y THEN (FN w -> report w) 2

ELSE (FN w -> report w) 3)(u > z)) x) 0

2. (9 pts) Compute the following CPS transformation. All parts should be transformed completely.

[[if z = 3 then (y + 4) else x]](FN w -> report w)

3

Solution:

[[if z = 3 then y + 4 else x]](FN w -> report w) =

[[z = 3]](FN a -> IF a THEN [[y + 4]](FN w -> report w) ELSE [[x]](FN w -> report w))

[[y + 4]](FN w -> report w) =

[[4]](FN a -> [[y]](FN b -> (FN w -> report w)(b + a)))

[[y]](FN b -> (FN w -> report w)(b + a)) =

(FN b -> (FN w -> report w)(b + a)) y

[[4]](FN a -> [[y]](FN b -> (FN w -> report w)(b + a)))
=

[[4]](FN a -> (FN b -> (FN w -> report w)(b + a)) y) =

(FN a -> (FN b -> (FN w -> report w)(b + a)) y) 4

[[x]](FN w -> report w) = (FN w -> report w) x

[[z = 3]](FN a -> IF a THEN [[y + 4]](FN w -> report w) ELSE [[x]](FN w -> report w))
=

[[z = 3]] (FN a -> IF a THEN (FN a -> (FN b -> (FN w -> report w)(b + a)) y) 4
ELSE (FN w -> report w) x)

) =

[[3]](FN c -> [[z]] FN d -> (FN a ->
IF a THEN (FN a -> (FN b -> (FN w -> report w)(b + a)) y) 4
ELSE (FN w -> report w) x)(d = c)

)

[[z]] FN d -> (FN a ->
IF a THEN (FN a -> (FN b -> (FN w -> report w)(b + a)) y) 4
ELSE (FN w -> report w) x)(d = c)

 =

 FN d -> (FN a ->
IF a THEN (FN a -> (FN b -> (FN w -> report w)(b + a)) y) 4
ELSE (FN w -> report w) x)(d = c)

z

[[3]](FN c -> [[z]] FN d -> (FN a ->
IF a THEN (FN a -> (FN b -> (FN w -> report w)(b + a)) y) 4
ELSE (FN w -> report w) x)(d = c)

) =

[[3]] FN d -> (FN a ->
IF a THEN (FN a -> (FN b -> (FN w -> report w)(b + a)) y) 4
ELSE (FN w -> report w) x)(d = c)

z

=

(FN c -> (FN d -> (FN a -> IF a
THEN (FN a -> (FN b -> (FN w -> report w)(b + a)) y) 4
ELSE (FN w -> report w) x)(d = c)) z) 3

4.3 Functions
A function expression by itself does not get evaluated (well, it gets turned into a closure), so it needs to be handed to
the continuation directly, except that, when it eventually gets applied, it will need additionally to take a continuation as

4

another argument, and its body will need to have been transformed with respect to this additional argument. Therefore,
we need to choose a new continuation variable k to be the formal parameter for passing a continuation into the function.
Then, we need to transform the body with k as its continuation, and put it inside a continuation function with the same
original formal parameter together with k. The original continuation κ is then applied to the result.

[[fun x -> e]]κ = κ (FUN x k -> [[e]]k) Where k is new (fresh for κ)

Notice that we are not yet evaluating anything, so (FUN x k -> [[e]]k) is a CPS function expression, not actually a
closure.

Example:
[[fun x -> x + 1]](FN w -> report w)
= (FN w -> report w) (FUN x k -> (FN z -> ((FN y -> k (y + z)) x)) 1)

3. (11 pts) Compute the following CPS transformation. All parts should be transformed completely.

[[fun x -> if x < 2 then x else (x * 2)]](FN w -> report w)

Solution:

[[fun x -> if x < 2 then x else x * 2]](FN w -> report w) =

(FN w -> report w)(FUN x k0 -> [[if x < 2 then x else x * 2]]k0)

[[if x < 2 then x else x * 2]]k0 =
[[x < 2]](FN a -> IF a THEN [[x]]k0 ELSE [[x * 2]]k0)

[[x]]k0 = k0 x

[[x * 2]]k0 = [[2]](FN a -> [[x]](FN b -> k0(b * a)))

[[x]](FN b -> k0(b * a)) = (FN b -> k0(b * a)) x

[[2]](FN a -> [[x]](FN b -> k0(b * a)))
=

[[2]](FN a -> (FN b -> k0(b * a)) x) =
(FN a -> (FN b -> k0(b * a)) x) 2

[[x < 2]](FN a -> IF a THEN [[x]]k0 ELSE [[x * 2]]k0)
=

[[x < 2]](FN a -> IF a THEN k0 x ELSE (FN a -> (FN b -> k0(b * a)) x) 2) =
[[2]](FN c -> [[x]] (FN d -> (FN a -> IF a THEN k0 x

ELSE (FN a -> (FN b -> k0(b * a)) x) 2)(d < c)

))
[[x]] (FN d -> (FN a -> IF a THEN k0 x

ELSE (FN a -> (FN b -> k0(b * a)) x) 2)(d < c)

) =

(FN d -> (FN a -> IF a THEN k0 x
ELSE (FN a -> (FN b -> k0(b * a)) x) 2)(d < c)) x

5

[[2]](FN c -> [[x]](FN d -> (FN a -> IF a THEN k0 x
ELSE (FN a -> (FN b -> k0(b * a)) x) 2)(d < c)

)) =

[[2]] (FN c -> (FN d -> (FN a -> IF a THEN k0 x
ELSE (FN a -> (FN b -> k0(b * a)) x) 2)(d < c)) x)

=

(FN c -> (FN d -> (FN a -> IF a THEN k0 x
ELSE (FN a -> (FN b -> k0(b * a)) x) 2)(d < c)) x) 2

(FN w -> report w)(FUN x k0 -> [[if x < 2 then x else x * 2]]k0) =
(FN w -> report w) (FUN x k0 -> (FN c -> (FN d -> (FN a -> IF a THEN k0 x
ELSE (FN a -> (FN b -> k0(b * a)) x) 2)(d < c)) x) 2)

4.4 Application
The CPS transformation for application mirrors its evaluation order. In PicoML, we will uniformly use right-to-left
evaluation. Therefore, to evaluate an application, first evaluate e2 to a value, then evaluate the function, e1, to a
closure, which is applied to the value. We create a new continuation that takes the result of e2 and binds it to v2, then
evaluates e1 and binds it to v1. Finally, v1 is applied to v2 and, since the CPS transformation makes all functions take
a continuation, it is also applied to the current continuation κ. This rule is formalized by:

[[e1 e2]]κ = [[e2]](FN v2 -> [[e1]](FN v1 -> v1 v2 κ))
Where

v2 is fresh for e1 and κ
v1 is fresh for v2 and κ

Example: [[(fun x -> x + 1) 2]](FN w -> report w)
= [[2]](FN y -> [[(fun x -> x + 1)]](FN z -> z y (FN w -> report w)))
= (FN y -> [[(fun x -> x + 1)]](FN z -> z y (FN w -> report w)))2
= (FN y -> (FN z -> z y (FN w -> report w))

(FUN x k -> (FN b -> ((FN a -> k (a + b)) x)) 1))2

4. (24 pts) Compute the following CPS transformation. All parts should be transformed completely.

[[(fun f -> fun x -> (f x) + 3) (fun y -> 2 * y) 17]](FN w -> report w)

6

Solution:

Let κa = (FN b -> (b a (FN w -> report w)))

[[(fun f -> fun x -> (f x) + 3) (fun y -> 2 * y) 17]](FN w -> report w) =

[[17]](FN a -> [[(fun f -> fun x -> (f x) + 3) (fun y -> 2 * y)]]κa)

[[(fun f -> fun x -> (f x) + 3) (fun y -> 2 * y)]]κa =
[[fun y -> 2 * y]](FN c -> [[fun f -> fun x -> (f x) + 3]](FN d -> (d c κa)))

[[fun f -> fun x -> (f x) + 3]](FN d -> (d c κa)) =

(FN d -> (d c κa))(FUN f k0 -> [[fun x -> (f x) + 3]]k0)

[[fun x -> (f x) + 3]]k0 =
k0(FUN x k1 -> [[(f x) + 3]]k1)

[[(f x) + 3]]k1 =
[[3]](FN a -> [[f x]](FN b -> k1(b + a)))

[[f x]](FN b -> k1(b + a)) =
[[x]](FN c -> [[f]](FN d -> (d c (FN b -> k1(b + a)))))

[[f]](FN d -> (d c (FN b -> k1(b + a)))) =
(FN d -> (d c (FN b -> k1(b + a)))) f

[[x]](FN c -> [[f]](FN d -> (d c (FN b -> k1(b + a)))))
=

[[x]](FN c -> (FN d -> (d c (FN b -> k1(b + a)))) f) =
(FN c -> (FN d -> (d c (FN b -> k1(b + a)))) f) x

[[3]](FN a -> [[f x]](FN b -> k1(b + a)))
=

[[3]](FN a -> (FN c -> (FN d -> (d c (FN b -> k1(b + a)))) f) x) =
(FN a -> (FN c -> (FN d -> (d c (FN b -> k1(b + a)))) f) x) 3

k0(FUN x k1 -> [[(f x) + 3]]k1) =
k0 (FUN x k1 -> (FN a -> (FN c -> (FN d -> (d c (FN b -> k1(b + a)))) f) x) 3)

Let κ01 = k0 (FUN x k1 -> (FN a -> (FN c -> (FN d -> (d c (FN b -> k1(b + a)))) f) x) 3)

(FN d -> (d c κa))(FUN f k0 -> [[fun x -> (f x) + 3]]k0) =
(FN d -> (d c κa)) (FUN f k0 -> κ01)

[[fun y -> 2 * y]](FN c -> [[fun f -> fun x -> (f x) + 3]](FN d -> (d c κa)))
=

[[fun y -> 2 * y]](FN c -> (FN d -> (d c κa)) (FUN f k0 -> κ01)) =

(FN c -> (FN d -> (d c κa)) (FUN f k0 -> κ01))(FUN y k2 -> [[2 * y]]k2)

[[2 * y]]k2 = [[y]](FN a -> [[2]](FN b -> k2(b * a)))

[[2]](FN b -> k2(b * a)) = (FN b -> k2(b * a)) 2

7

[[y]](FN a -> [[2]](FN b -> k2(b * a)))
=

[[y]](FN a -> (FN b -> k2(b * a)) 2) =
(FN a -> (FN b -> k2(b * a)) 2) y

(FN c -> (FN d -> (d c κa)) (FUN f k0 -> κ01))(FUN y k2 -> [[2 * y]]k2) =
(FN c -> (FN d -> (d c κa)) (FUN f k0 -> κ01))
(FUN y k2 -> (FN a -> (FN b -> k2(b * a)) 2) y)

[[17]](FN a -> [[(fun f -> fun x -> (f x) + 3) (fun y -> 2 * y)]]κa)
=

[[17]](FN a -> (FN c -> (FN d -> (d c κa)) (FUN f k0 -> κ01))
(FUN y k2 -> (FN a -> (FN b -> k2(b * a)) 2) y)

) =

(FN a -> (FN c -> (FN d -> (d c κa))
(FUN f k0 -> κ01))

(FUN y k2 -> (FN a -> (FN b -> k2(b * a)) 2) y))
17

Expanding out our local definitions, this becomes:

(FN a -> (FN c -> (FN d -> (d c (FN b -> (b a (FN w -> report w)))))
(FUN f k0 -> k0 (FUN x k1 ->
(FN a -> (FN c -> (FN d -> (d c (FN b -> k1(b + a)))) f) x) 3)))

(FUN y k2 -> (FN a -> (FN b -> k2(b * a)) 2) y))
17

8

	Change Log
	Objectives and Background
	Turn-In Procedure
	Background
	Variables, Constants, and Binary Operations
	Branching
	Functions
	Application

