HW 3 — Order of Evaluation

CS 421 — Fall 2014

Revision 1.0

Assigned Tuesday, September 9, 2014
Due Tuesday, September 16, 2014, 23:59pm
Extension 48 hours (20% penalty)

1 Change Log

1.0 Initial Release.

2 Tuarn-In Procedure

Unlike previous two homework assignments, homework 3 requires you to write OCaml code, so before submitting
please make sure that your solution successfully compiles.

You should put code answering each of the problems below in a file called hw3 .m1

The command to commit this file is:

svn commit -m "Turning hw3." hw3.ml

3 Objectives and Background

The purpose of this HW is to test your understanding of:
e Order of evaluation in OCaml

Another purpose of HWs is to provide you with experience answering non-programming written questions of the
kind you may experience on the midterms and final.

4 Problems

Note: In OCaml, in the application of an expression of function type to an argument, the argument is evaluated to a
value first, then the expression of function type is evaluated to a functional value. If the functional value is a closure
(as opposed to a primitive operation, or a partial application of a primitive operation), then the resulting application of
the closure to a value is done as described in class.

1. (4 pts) Write a declaration of a name verbose_inc that takes one integer argument, increments it by one, and
meets the following two requirements:

1. The result of the declaration prints:

declaring £
val verbose_inc : int -> int = <fun>

2. Evaluation of the function verbose_inc on an integer argument produces:

evaluating:
- : int

where . . . will be replaced with the provided integer argument incremented by one.
For example:
verbose_inc 2;;

evaluating:
- : int = 3

2. (5 pts) Write a function f that takes another function (g) as an argument. Function g evaluates to an integer when
applied to unit, (). The main computation f is to extract the value from its argument by applying it to unit, and
then to return the result of adding 2 to that value. However, this function is also to have side-effects consistent with
the behavior as shown in the examples below.

Example 1:

£ (fun () -> 1);;
ab- : int = 3

Example 2:

£ (fun () —-> print_string "x"; 5);;
axb- : int = 7

3. (6pts)

a. (3pts) Modify the order of evaluation imposed by the function £ above so that Example 1 prints the same
output, while Example 2 prints:

£ (fun () —-> print_string "x"; 5);;
xab- : int = 7

b. (3 pts) Modify the order of evaluation imposed by the function £ above so that Example 1 prints the same
output, while Example 2 prints:

£ (fun () —-> print_string "x"; 5);;
abx— : int = 7

