
HW 10 – Structural Operational and Transition
Semantics

CS 421 – Fall 2014
Revision 1.0

Assigned Friday, November 14, 2014
Due Friday, November 21, 2014, 11:59 PM
Extension 48 hours (20% penalty)

1 Change Log
1.1 Corrected the final value of y.

1.0 Initial Release.

2 Turn-In Procedure
Answer the problems below, save your work as a PDF (either scanned if handwritten or converted from a program),
add the PDF to the subversion repository (svn add hw10-submission.pdf)
and commit it (svn commit -m "submitting hw10"). Your file should be named hw10-submission.pdf
and committed in your assignments/hw10 directory.

3 Objectives and Background
The purpose of this HW is to test your understanding of

• The difference between structural operational semantics and transition semantics.

• How to write rules for transition semantics.

Another purpose of this HW is to provide you with experience answering non-programming written questions of the
kind you may experience on the midterms and final.

All problems on the homework will be based on the language discussed in class, which has the following syntax:

I ∈ Identifiers
N ∈ Numerals
B ::= true | false | B & B | B or B | not B | E < E | E = E
E ::= N | I | E + E | E ∗ E | E − E | − E
C ::= skip | C;C | I::=E | if B then C else C fi | while B do C od

1

4 Problems
1. a. (10 points) Using the rules given for natural semantics in class, give a proof that, starting with a memory that

maps x to 1, if not(x > 5) then y:= x+1 else y:=y-1 fi evaluates to a memory where x
maps to 1 and y maps to 2.
Solution:

 (x,{x->1})⇓1 (5,{x->1})⇓5 (1>5) = false (x,{x->1})⇓1 (1, {x->1})⇓1 1+1=2

 (x>5, {x->1})⇓ false (x+1, {x->1})⇓ 2

 (not (x>5), {x->1})⇓ true (y:=x+1,{x->1})⇓ {y->2, x->1}

 (if not (x>5) then y:=x+1 else y:=y+1 fi, {x->1})⇓ {y->2, x->1}

If-then-else

Boolean-not

Relation

Boolean

Identifier

Arith Exp

Assignment

Identifier Constant Constant

b. (5 points) Add the natural semantics (a.k.a. big-step semantics) for the if then command.
Solution:

(B,m) ⇓ true (C,m) ⇓m’ (B,m) ⇓false .

(if B then C, m) ⇓ m’ (if B then C, m) ⇓ m

I would also accept

(if B then C else skip, m) ⇓ m’

(if B then C, m) ⇓ m’

c. (5 points) Add the transition semantics for the same.

(if true then C, m) ⇒ (C,m) (if false then C, m) ⇒ m

(B,m) ⇒ (B’,m)

(if B then C, m) ⇒ (if B’ then C, m)

I would also accept

(if B then C, m) ⇒ (if B then C else skip, m)

2

