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Programming Languages and 
Compilers (CS 421) 
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2112 SC, UIUC 
http://courses.engr.illinois.edu/cs421 

Based in part on slides by Mattox Beckman, as updated 
by Vikram Adve and Gul Agha 



12/5/13 2 

Axiomatic Semantics 

n  Also called Floyd-Hoare Logic 
n  Based on formal logic (first order 

predicate calculus) 
n  Axiomatic Semantics is a logical system 

built from axioms and inference rules 
n  Mainly suited to simple imperative 

programming languages 
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Axiomatic Semantics 

n  Used to formally prove a property (post-
condition) of the state (the values of the 
program variables) after the execution 
of program, assuming another property 
(pre-condition) of the state holds before 
execution 
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Axiomatic Semantics 

n Goal: Derive statements of form 
{P} C {Q} 

n P , Q  logical statements about state, 
P precondition, Q postcondition,        
C program 

n Example:  {x = 1} x := x + 1 {x = 2} 
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Axiomatic Semantics 

n  Approach: For each type of language 
statement, give an axiom or inference rule 
stating how to derive assertions of form  

 {P} C {Q}  
  where C is a statement of that type 

n  Compose axioms and inference rules to 
build proofs for complex programs 
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Axiomatic Semantics 

n  An expression {P} C {Q} is a partial 
correctness statement 

n  For total correctness must also prove 
that C terminates (i.e. doesn’t run 
forever) 
n Written:  [P] C [Q] 

n  Will only consider partial correctness 
here 
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Language 

n  We will give rules for simple imperative 
language 

<command> 
  ::= <variable> := <term> 
    |  <command>; … ;<command> 
    |  if <statement> then <command> else 

<command> 
    | while <statement> do <command> 
 

n  Could add more features, like for-loops 
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Substitution 

n  Notation:   P[e/v]  (sometimes P[v <- e]) 

n  Meaning:   Replace every v in P by e 

n  Example:  
 (x + 2) [y-1/x] = ((y – 1) + 2) 
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The Assignment Rule 

 

{P [e/x] } x := e {P} 

Example: 

 {    ?    } x := y {x = 2} 
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The Assignment Rule 

 

{P [e/x] } x := e {P} 

Example: 

 { _ = 2 } x := y { x = 2} 
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The Assignment Rule 

 

{P [e/x] } x := e {P} 

Example: 

 { y = 2 } x := y { x = 2} 
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The Assignment Rule 

{P [e/x] } x := e {P} 

Examples: 

 {y = 2} x := y {x = 2} 

 {y = 2} x := 2 {y = x} 

 {x + 1 = n + 1} x := x + 1  {x = n + 1} 

 {2 = 2} x := 2 {x = 2} 
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The Assignment Rule – Your Turn 

n  What is the weakest precondition of 
x := x + y {x + y = w – x}? 

{(x + y) + y = w – (x + y)} 
x := x + y 

{x + y = w – x} 

? 
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The Assignment Rule – Your Turn 

n  What is the weakest precondition of 
x := x + y {x + y = w – x}? 

{(x + y) + y = w – (x + y)} 
x := x + y 

{x + y = w – x} 
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Precondition Strengthening 

P è P’    {P’} C {Q} 
{P} C {Q} 

 

n  Meaning: If we can show that P 
implies P’  (Pè P’) and we can 
show that {P’} C {Q}, then we know 
that {P} C {Q} 

n  P is stronger  than P’ means P è 
P’  
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Precondition Strengthening 

n  Examples: 
x = 3 è x < 7  {x < 7} x := x + 3 {x < 10} 

{x = 3} x := x + 3 {x < 10} 
 

True è 2 = 2   {2 = 2} x:= 2 {x = 2} 
{True}  x:= 2 {x = 2} 

 
x=n è x+1=n+1    {x+1=n+1} x:=x+1 {x=n+1} 

{x=n} x:=x+1 {x=n+1} 
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Which Inferences Are Correct? 

 
{x > 0 & x < 5} x := x * x {x < 25} 

{x = 3} x := x * x {x < 25} 
 

{x = 3} x := x * x {x < 25} 
{x > 0 & x < 5} x := x * x {x < 25} 

 
{x * x < 25 } x := x * x {x < 25} 

{x > 0 & x < 5} x := x * x {x < 25} 
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Which Inferences Are Correct? 

 
{x > 0 & x < 5} x := x * x {x < 25} 

{x = 3} x := x * x {x < 25} 
 

{x = 3} x := x * x {x < 25} 
{x > 0 & x < 5} x := x * x {x < 25} 

 
{x * x < 25 } x := x * x {x < 25} 

{x > 0 & x < 5} x := x * x {x < 25} 
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Sequencing 

{P} C1 {Q}     {Q} C2 {R} 
{P} C1; C2 {R} 

 
n  Example: 

{z = z & z = z} x := z {x = z & z = z} 
{x = z & z = z} y := z {x = z & y = z} 

{z = z & z = z} x := z; y := z {x = z & y = z} 
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Sequencing 

{P} C1 {Q}     {Q} C2 {R} 
{P} C1; C2 {R} 

 
n  Example: 

{z = z & z = z} x := z {x = z & z = z} 
{x = z & z = z} y := z {x = z & y = z} 

{z = z & z = z} x := z; y := z {x = z & y = z} 
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Postcondition Weakening 

{P} C {Q’}    Q’ è Q 
{P} C {Q} 

 
Example: 

{z = z & z = z} x := z; y := z {x = z & y = z} 
(x = z & y = z) è (x = y) 

{z = z & z = z} x := z; y := z {x = y} 
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Rule of Consequence 

P è P’    {P’} C {Q’}    Q’ è Q 
{P} C {Q} 

 
n  Logically equivalent to the combination of 

Precondition Strengthening and 
Postcondition Weakening 

n  Uses P è P and  Q è Q 
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If Then Else 

{P and B} C1 {Q}   {P and (not B)} C2 {Q} 
{P} if B then C1 else C2 {Q} 

n  Example:  Want 
{y=a} 

 if x < 0 then y:= y-x else y:= y+x  
{y=a+|x|} 

Suffices to show: 
   (1) {y=a&x<0}  y:=y-x  {y=a+|x|}  and      

(4) {y=a&not(x<0)}  y:=y+x  {y=a+|x|} 
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(3)        (y=a&x<0)è y-x=a+|x| 
(2)      {y-x=a+|x|}  y:=y-x   {y=a+|x|} 
(1)      {y=a&x<0}  y:=y-x  {y=a+|x|} 
   
(1) Reduces to (2) and (3) by   
      Precondition Strengthening 
(2) Follows from assignment axiom 
(3) Because x<0 è |x| = -x 

{y=a&x<0}  y:=y-x  {y=a+|x|} 
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(6)     (y=a&not(x<0))è(y+x=a+|x|) 
(5)     {y+x=a+|x|}  y:=y+x   {y=a+|x}} 
(4)   {y=a&not(x<0)}  y:=y+x  {y=a+|x|} 
   
(4) Reduces to (5) and (6) by 

Precondition Strengthening 
(5) Follows from assignment axiom 
(6) Because not(x<0) è |x| = x 

{y=a&not(x<0)} y:=y+x {y=a+|x|} 
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If then else 

 
(1)          {y=a&x<0}y:=y-x{y=a+|x|}         . 
(4)      {y=a&not(x<0)}y:=y+x{y=a+|x|}     . 

{y=a}  
if x < 0 then y:= y-x else y:= y+x 

 {y=a+|x|} 
 

By the if_then_else rule 
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While 

n  We need a rule to be able to make 
assertions about while loops. 
n   Inference rule because we can only draw 

conclusions if we know something about 
the body 

n  Let’s start with: 
{     ?     }     C    {      ?     } 

{      ?      }   while   B  do   C    {  P  } 
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While 

n  The loop may never be executed, so if 
we want P to hold after, it had better 
hold before, so let’s try: 

{     ?     }     C    {      ?     } 
{  P  }   while   B  do   C    {  P  } 
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While 

n  If all we know is  P  when we enter the 
while loop, then we all we know when 
we enter the body is   (P and  B) 

n  If we need to know   P  when we finish 
the while loop, we had better know it 
when we finish the loop body: 

{ P and B}  C  { P } 
{ P }  while  B  do  C  { P } 
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While 

n  We can strengthen the previous rule 
because we also know that when the 
loop is finished,  not B  also holds 

n  Final while rule: 

{ P and B }  C  { P } 
{ P } while  B  do  C  { P and not B } 
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While 

{ P and B }  C  { P } 
{ P } while  B  do  C  { P and not B } 

 
n  P satisfying this rule is called a loop 

invariant because it must hold 
before and after the each iteration 
of the loop 
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While 

n  While rule generally needs to be 
used together with precondition 
strengthening and postcondition 
weakening 

n  There is NO algorithm for 
computing the correct P; it requires 
intuition and an understanding of 
why the program works 
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Example 

n  Let us prove  
   {x>= 0 and x = a} 
   fact := 1; 
   while x > 0 do (fact := fact * x; x := x –1) 
   {fact = a!} 
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Example 

n  We need to find a condition P that is true 
both before and after the loop is executed, 
and such that 

 
(P and not x > 0) è (fact = a!) 
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Example 

n  First attempt: 
{a! = fact * (x!)} 

n  Motivation: 
n  What we want to compute:  a! 
n  What we have computed:  fact  

 which is the sequential product of  a down 
through (x + 1) 

n  What we still need to compute:  x! 
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Example 

By post-condition weakening suffices to 
show 

1.   {x>=0 and x = a}  
      fact := 1; 
      while x > 0 do (fact := fact * x; x := x –1) 
      {a! = fact * (x!) and not (x > 0)} 
and 
2.  {a! = fact * (x!) and not (x > 0) } è       

{fact = a!} 
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Problem 

2.  {a! = fact * (x!) and not (x > 0)} è {fact = a!} 
n  Don’t know this if x < 0 
n  Need to know that x = 0 when loop 

terminates 
n  Need a new loop invariant 
n  Try adding x >= 0 
n  Then will have x = 0 when loop is done 
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Example 

Second try, combine the two: 
P = {a! = fact * (x!) and x >=0} 

Again,  suffices to show 
1.   {x>=0 and x = a}  
      fact := 1; 
      while x > 0 do (fact := fact * x; x := x –1) 
      {P and not x > 0} 
and 
2.   {P and not x > 0} è  {fact = a!} 
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Example 

n  For 2, we need 
{a! = fact * (x!) and x >=0 and not (x > 0)} è 

{fact = a!} 
   But {x >=0 and not (x > 0)} è {x = 0} so  

fact * (x!) = fact * (0!) = fact 
   Therefore 

{a! = fact * (x!) and x >=0 and not (x > 0)} è 
{fact = a!} 
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Example 

n  For 1, by the sequencing rule it suffices to 
show 

3. {x>=0 and x = a}  
      fact := 1 
    {a! = fact * (x!) and x >=0 } 
And 
4.  {a! = fact * (x!) and x >=0} 
      while x > 0 do  
      (fact := fact * x; x := x –1) 
     {a! = fact * (x!) and x >=0 and not (x > 0)} 
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Example 

n  Suffices to show that 
{a! = fact * (x!) and x >= 0}  

   holds before the while loop is entered and 
that if 

{(a! = fact * (x!)) and x >= 0 and x > 0} 
 holds before we execute the body of the 
loop, then 

{(a! = fact * (x!)) and x >= 0} 
holds after we execute the body 
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Example 

By the assignment rule, we have 
{a! = 1 * (x!) and x >= 0} 

fact := 1 
{a! = fact * (x!) and x >= 0} 

Therefore, to show (3), by  
precondition strengthening, it suffices  
to show 

(x>= 0 and x = a) è 
(a! = 1 * (x!) and x >= 0) 
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Example 

(x>= 0 and x = a) è 
(a! = 1 * (x!) and x >= 0) 

holds because x = a è x! = a! 
 
Have that {a! = fact * (x!) and x >= 0} 
holds at the start of the while loop 
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Example 

To show (4):  
  {a! = fact * (x!) and x >=0} 
  while x > 0 do  
  (fact := fact * x; x := x –1) 
  {a! = fact * (x!) and x >=0 and not (x > 0)} 
we need to show that  

{(a! = fact * (x!)) and x >= 0} 
is a loop invariant 
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Example 

We need to show: 
{(a! = fact * (x!)) and x >= 0 and x > 0} 

( fact = fact * x; x := x – 1 ) 
{(a! = fact * (x!)) and x >= 0} 

 
We will use assignment rule,  
sequencing rule and precondition  
strengthening 
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Example 

By the assignment rule, we have  
{(a! = fact * ((x-1)!)) and x – 1 >= 0} 

x := x – 1 
{(a! = fact * (x!)) and x >= 0} 

By the sequencing rule, it suffices to show 
{(a! = fact * (x!)) and x >= 0 and x > 0} 

fact = fact * x 
{(a! = fact * ((x-1)!)) and x – 1 >= 0} 
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Example 

By the assignment rule, we have that 
{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0} 

fact = fact * x 
{(a! = fact * ((x-1)!)) and x – 1 >= 0} 

By Precondition strengthening, it suffices  
to show that  
((a! = fact * (x!)) and x >= 0 and x > 0) è 
((a! = (fact * x) * ((x-1)!)) and x – 1 >= 0) 
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Example 

However 
fact * x * (x – 1)! = fact * x 

and              (x > 0) è x – 1 >= 0 
since x is an integer,so 

{(a! = fact * (x!)) and x >= 0 and x > 0} è 
{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0} 
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Example 

Therefore, by precondition strengthening 
{(a! = fact * (x!)) and x >= 0 and x > 0} 

fact = fact * x 
{(a! = fact * ((x-1)!)) and x – 1 >= 0} 

 
This finishes the proof 


