
12/5/13 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

12/5/13 2

Axiomatic Semantics

n  Also called Floyd-Hoare Logic
n  Based on formal logic (first order

predicate calculus)
n  Axiomatic Semantics is a logical system

built from axioms and inference rules
n  Mainly suited to simple imperative

programming languages

12/5/13 3

Axiomatic Semantics

n  Used to formally prove a property (post-
condition) of the state (the values of the
program variables) after the execution
of program, assuming another property
(pre-condition) of the state holds before
execution

12/5/13 4

Axiomatic Semantics

n Goal: Derive statements of form
{P} C {Q}

n P , Q logical statements about state,
P precondition, Q postcondition,
C program

n Example: {x = 1} x := x + 1 {x = 2}

12/5/13 5

Axiomatic Semantics

n  Approach: For each type of language
statement, give an axiom or inference rule
stating how to derive assertions of form

 {P} C {Q}
 where C is a statement of that type

n  Compose axioms and inference rules to
build proofs for complex programs

12/5/13 6

Axiomatic Semantics

n  An expression {P} C {Q} is a partial
correctness statement

n  For total correctness must also prove
that C terminates (i.e. doesn’t run
forever)
n Written: [P] C [Q]

n  Will only consider partial correctness
here

12/5/13 7

Language

n  We will give rules for simple imperative
language

<command>
 ::= <variable> := <term>
 | <command>; … ;<command>
 | if <statement> then <command> else

<command>
 | while <statement> do <command>

n  Could add more features, like for-loops

12/5/13 8

Substitution

n  Notation: P[e/v] (sometimes P[v <- e])

n  Meaning: Replace every v in P by e

n  Example:
 (x + 2) [y-1/x] = ((y – 1) + 2)

12/5/13 9

The Assignment Rule

{P [e/x] } x := e {P}

Example:

 { ? } x := y {x = 2}

12/5/13 10

The Assignment Rule

{P [e/x] } x := e {P}

Example:

 { _ = 2 } x := y { x = 2}

12/5/13 11

The Assignment Rule

{P [e/x] } x := e {P}

Example:

 { y = 2 } x := y { x = 2}

12/5/13 12

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {y = 2} x := y {x = 2}

 {y = 2} x := 2 {y = x}

 {x + 1 = n + 1} x := x + 1 {x = n + 1}

 {2 = 2} x := 2 {x = 2}

12/5/13 13

The Assignment Rule – Your Turn

n  What is the weakest precondition of
x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}
x := x + y

{x + y = w – x}

?

12/5/13 14

The Assignment Rule – Your Turn

n  What is the weakest precondition of
x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}
x := x + y

{x + y = w – x}

12/5/13 15

Precondition Strengthening

P è P’ {P’} C {Q}
{P} C {Q}

n  Meaning: If we can show that P
implies P’ (Pè P’) and we can
show that {P’} C {Q}, then we know
that {P} C {Q}

n  P is stronger than P’ means P è
P’

12/5/13 16

Precondition Strengthening

n  Examples:
x = 3 è x < 7 {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True è 2 = 2 {2 = 2} x:= 2 {x = 2}
{True} x:= 2 {x = 2}

x=n è x+1=n+1 {x+1=n+1} x:=x+1 {x=n+1}

{x=n} x:=x+1 {x=n+1}

12/5/13 17

Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}

12/5/13 18

Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}

12/5/13 19

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

n  Example:

{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

12/5/13 20

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

n  Example:

{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

12/5/13 21

Postcondition Weakening

{P} C {Q’} Q’ è Q
{P} C {Q}

Example:

{z = z & z = z} x := z; y := z {x = z & y = z}
(x = z & y = z) è (x = y)

{z = z & z = z} x := z; y := z {x = y}

12/5/13 22

Rule of Consequence

P è P’ {P’} C {Q’} Q’ è Q
{P} C {Q}

n  Logically equivalent to the combination of

Precondition Strengthening and
Postcondition Weakening

n  Uses P è P and Q è Q

12/5/13 23

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 {Q}

n  Example: Want
{y=a}

 if x < 0 then y:= y-x else y:= y+x
{y=a+|x|}

Suffices to show:
 (1) {y=a&x<0} y:=y-x {y=a+|x|} and

(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

12/5/13 24

(3) (y=a&x<0)è y-x=a+|x|
(2) {y-x=a+|x|} y:=y-x {y=a+|x|}
(1) {y=a&x<0} y:=y-x {y=a+|x|}

(1) Reduces to (2) and (3) by
 Precondition Strengthening
(2) Follows from assignment axiom
(3) Because x<0 è |x| = -x

{y=a&x<0} y:=y-x {y=a+|x|}

12/5/13 25

(6) (y=a¬(x<0))è(y+x=a+|x|)
(5) {y+x=a+|x|} y:=y+x {y=a+|x}}
(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

(4) Reduces to (5) and (6) by

Precondition Strengthening
(5) Follows from assignment axiom
(6) Because not(x<0) è |x| = x

{y=a¬(x<0)} y:=y+x {y=a+|x|}

12/5/13 26

If then else

(1) {y=a&x<0}y:=y-x{y=a+|x|} .
(4) {y=a¬(x<0)}y:=y+x{y=a+|x|} .

{y=a}
if x < 0 then y:= y-x else y:= y+x

 {y=a+|x|}

By the if_then_else rule

12/5/13 27

While

n  We need a rule to be able to make
assertions about while loops.
n  Inference rule because we can only draw

conclusions if we know something about
the body

n  Let’s start with:
{ ? } C { ? }

{ ? } while B do C { P }

12/5/13 28

While

n  The loop may never be executed, so if
we want P to hold after, it had better
hold before, so let’s try:

{ ? } C { ? }
{ P } while B do C { P }

12/5/13 29

While

n  If all we know is P when we enter the
while loop, then we all we know when
we enter the body is (P and B)

n  If we need to know P when we finish
the while loop, we had better know it
when we finish the loop body:

{ P and B} C { P }
{ P } while B do C { P }

12/5/13 30

While

n  We can strengthen the previous rule
because we also know that when the
loop is finished, not B also holds

n  Final while rule:

{ P and B } C { P }
{ P } while B do C { P and not B }

12/5/13 31

While

{ P and B } C { P }
{ P } while B do C { P and not B }

n  P satisfying this rule is called a loop

invariant because it must hold
before and after the each iteration
of the loop

12/5/13 32

While

n  While rule generally needs to be
used together with precondition
strengthening and postcondition
weakening

n  There is NO algorithm for
computing the correct P; it requires
intuition and an understanding of
why the program works

12/5/13 33

Example

n  Let us prove
 {x>= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1)
 {fact = a!}

12/5/13 34

Example

n  We need to find a condition P that is true
both before and after the loop is executed,
and such that

(P and not x > 0) è (fact = a!)

12/5/13 35

Example

n  First attempt:
{a! = fact * (x!)}

n  Motivation:
n  What we want to compute: a!
n  What we have computed: fact

 which is the sequential product of a down
through (x + 1)

n  What we still need to compute: x!

12/5/13 36

Example

By post-condition weakening suffices to
show

1. {x>=0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1)
 {a! = fact * (x!) and not (x > 0)}
and
2. {a! = fact * (x!) and not (x > 0) } è

{fact = a!}

12/5/13 37

Problem

2. {a! = fact * (x!) and not (x > 0)} è {fact = a!}
n  Don’t know this if x < 0
n  Need to know that x = 0 when loop

terminates
n  Need a new loop invariant
n  Try adding x >= 0
n  Then will have x = 0 when loop is done

12/5/13 38

Example

Second try, combine the two:
P = {a! = fact * (x!) and x >=0}

Again, suffices to show
1. {x>=0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1)
 {P and not x > 0}
and
2. {P and not x > 0} è {fact = a!}

12/5/13 39

Example

n  For 2, we need
{a! = fact * (x!) and x >=0 and not (x > 0)} è

{fact = a!}
 But {x >=0 and not (x > 0)} è {x = 0} so

fact * (x!) = fact * (0!) = fact
 Therefore

{a! = fact * (x!) and x >=0 and not (x > 0)} è
{fact = a!}

12/5/13 40

Example

n  For 1, by the sequencing rule it suffices to
show

3. {x>=0 and x = a}
 fact := 1
 {a! = fact * (x!) and x >=0 }
And
4. {a! = fact * (x!) and x >=0}
 while x > 0 do
 (fact := fact * x; x := x –1)
 {a! = fact * (x!) and x >=0 and not (x > 0)}

12/5/13 41

Example

n  Suffices to show that
{a! = fact * (x!) and x >= 0}

 holds before the while loop is entered and
that if

{(a! = fact * (x!)) and x >= 0 and x > 0}
 holds before we execute the body of the
loop, then

{(a! = fact * (x!)) and x >= 0}
holds after we execute the body

12/5/13 42

Example

By the assignment rule, we have
{a! = 1 * (x!) and x >= 0}

fact := 1
{a! = fact * (x!) and x >= 0}

Therefore, to show (3), by
precondition strengthening, it suffices
to show

(x>= 0 and x = a) è
(a! = 1 * (x!) and x >= 0)

12/5/13 43

Example

(x>= 0 and x = a) è
(a! = 1 * (x!) and x >= 0)

holds because x = a è x! = a!

Have that {a! = fact * (x!) and x >= 0}
holds at the start of the while loop

12/5/13 44

Example

To show (4):
 {a! = fact * (x!) and x >=0}
 while x > 0 do
 (fact := fact * x; x := x –1)
 {a! = fact * (x!) and x >=0 and not (x > 0)}
we need to show that

{(a! = fact * (x!)) and x >= 0}
is a loop invariant

12/5/13 45

Example

We need to show:
{(a! = fact * (x!)) and x >= 0 and x > 0}

(fact = fact * x; x := x – 1)
{(a! = fact * (x!)) and x >= 0}

We will use assignment rule,
sequencing rule and precondition
strengthening

12/5/13 46

Example

By the assignment rule, we have
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

x := x – 1
{(a! = fact * (x!)) and x >= 0}

By the sequencing rule, it suffices to show
{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

12/5/13 47

Example

By the assignment rule, we have that
{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

By Precondition strengthening, it suffices
to show that
((a! = fact * (x!)) and x >= 0 and x > 0) è
((a! = (fact * x) * ((x-1)!)) and x – 1 >= 0)

12/5/13 48

Example

However
fact * x * (x – 1)! = fact * x

and (x > 0) è x – 1 >= 0
since x is an integer,so

{(a! = fact * (x!)) and x >= 0 and x > 0} è
{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}

12/5/13 49

Example

Therefore, by precondition strengthening
{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

This finishes the proof

