Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/20/14

i Lambda Calculus - Motivation

= Aim is to capture the essence of
functions, function applications, and
evaluation

= A—Calculus is a theory of computation

= ' The Lambda Calculus: Its Syntax and
Semantics”. H. P. Barendregt. North
Holland, 1984

11/20/14

i Lambda Calculus - Motivation

= All sequential programs may be viewed
as functions from input (initial state and
input values) to output (resulting state
and output values).

= A-calculus is @ mathematical formalism
of functions and functional
computations

= Two flavors: typed and untyped

11/20/14

i Untyped A-Calculus

= Only three kinds of
expressions:

«Variables: x, y, z, w, ...

= Abstraction: A Xx. e
(Function creation, think fun x -> e)

= Application: e, e,

11/20/14

‘-L Untyped A-Calculus Grammar

= Formal BNF Grammar:

= <expression> ::= <variable>
<abstraction>
<application>
(<expression>)

= <abstraction>

::= A<variable>.<expression>
= <application>
.= <expression> <expression>

11/20/14 5

i Untyped A-Calculus Terminology

s Occurrence: a location of a subterm in a
term

= Variable binding: A\ X. e is a binding of x in e

s Bound occurrence: all occurrences of X in
A X €

s Free occurrence: one that is not bound

= Scope of binding: in A X. e, all occurrences in
e not in a subterm of the form A x. e’ (same

X)
= Free variables: all variables having free
occurrences In a term

11/20/14 6

i Example

= Label occurrences and scope:

(MX.YAY. Y (AX XY) X)X
12 34 56789

11/20/14

* Example

= Label occurrences and scope:

- fyel//\ free

(xx.y}\y.ay(kx/.\xy)x)ﬁ
12 34 56789

11/20/14

i Untyped A-Calculus

= How do you compute with the
A\-calculus?
= Roughly speaking, by substitution:

s (AX.e,) e, =*e, [e,/X]

= * Modulo all kinds of subtleties to avoid
free variable capture

11/20/14

i Transition Semantics for A-Calculus

E->E"’
EE -->E " F
= Application (version 1 - Lazy Evaluation)
(AXx.E) E --> HE /X]
= Application (version 2 - Eager Evaluation)
E -->E"’
(WNx.E)E"-->(AXx.E)E"’

(ML Xx.E) V--> FV/X]

V - variable or abstraction (value)

11/20/14 10

i How Powerful is the Untyped A-Calculus?

= The untyped A-calculus is Turing
Complete

= Can express any sequential computation

= Problems:

= How to express basic data: booleans,
integers, etc?

= How to express recursion?

= Constants, if _then_else, etc, are
conveniences; can be added as syntactic
sugar

11/20/14 11

i Typed vs Untyped A\-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT
Turing Complete (no recursion)

11/20/14 12

i Uses of A-Calculus

= Typed and untyped A-calculus used for
theoretical study of sequential
programming languages

= Sequential programming languages are
essentially the A-calculus, extended with
predefined constructs, constants, types,
and syntactic sugar

s Ocaml is close to the A-Calculus:
fun X -> exp --> A X. exp
letx = e, ine,--> (A X &)e

11/20/14 13

i o. Conversion

= o-conversion:
A X. exp --a--> A Y. (exp [y/X])
= Provided that
1. 'y is not free in exp

2. No free occurrence of x in exp
becomes bound in exp when
replaced by y

11/20/14

14

‘-L o. Conversion Non-Examples

1. Error: y is not free in termsecond
A X. xy><> AY.YVY

2. Error: free occurrence of x becomes
bound in wrong way when replaced by y

AX.ANY. xy,}(> ANY.AY. VY,
EXP exply/x]

But AX. (LY. y)X-0->AY.(AY.Y)Y
And Ay. (AY.Y)Y ——a—->AX. (AY.Y) X

11/20/14 15

i Congruence

= Let ~ be a relation on lambda
terms. ~ is a congruence if

= it is an equivalence relation

s If €, ~ e, then
= (ee) ~(ee)and (ee) ~ (e, €)
n }\,X. el N}\,X. ez

11/20/14

16

i o. Equivalence

= o equivalence is the smallest
congruence containing o
conversion

= One usually treats o-equivalent
terms as equal - i.e. use «
equivalence classes of terms

11/20/14 17

i Example

Show: A X. (AY. Y X)X ~a~ LY. (AX. XY)Y

s AX.(AY.YX)X—a—->ANZ. (NY.YZ)Z SO
AX.(AY. Y X)X ~voav AZ. (MY Y Z)Z

s (LY. Y 2Z)--0->(AX.XZ) SO
(LY.Yy Z) ~a~ (AX.X2Z) SO
NZ.(NY.YZ)Z~a~ ANz, (MX.X2Z)Z

s AZ. (AX.X2)Z-0->AY.(AX.XY)Y SO
NZ.(AX.XZ)Z~a~ AY. (WX XY)Y

s AX. (AY. Yy X)X ~vav AY. (AX. XY)Y

11/20/14 18

i Substitution

= Defined on a-equivalence classes of
terms

= P [N / x] means replace every free
occurrence of x in P by N

= P called redex; N called residue

= Provided that no variable free in P
becomes bound in P [N / x]

= Rename bound variables in P to avoid
capturing free variables of N

11/20/14 19

i Substitution

s X [N/ X]
=Y [N/X
= (e €) [
= (A X. €)

= (LY. e)

=N

N/ X

N/ X

=vyify=X
N/ x]=((e,[N/x])(e;[N/x]))

= (A X. €)
=AYy.(e[N/x])

provided y = x and y not free in N
=« Rename vy in redex if necessary

11/20/14

20

i Example

(Ay.yz)[(AX.xy) /2] =7
= Problems?
= Z in redex in scope of y binding
= y free in the residue
s (AY.Y2)[(MX. XY) /[z] —o-->
(DWW 2Z)[(MX.XY)/ z] =
AW. W (A X XY)

11/20/14

21

i Example

= Only replace free occurrences

s(AY.YZ(Mz.2)[(AX.X)/ 2] =
LY. Y (AX.X)(A2Z 2)

Not
LY. Y (AX X) (N z. (N X X))

11/20/14 22

i B reduction

= B Rule: (AX.P)N--8-->P [N /X]

= Essence of computation in the lambda
calculus

= Usually defined on a-equivalence
classes of terms

11/20/14 23

i Example

s (AMZ.(AX.XY)Z)(NY. Y Z)
-—B--> (A X. XY) (LY. Yy 2)
B> (AY.YZ)Y-p->yzZ

m (A X X X) (AX XX)
--B--> (A X. X X) (A X. X X)
-—B--> (A X. X X) (A X. X X) —-p--> ...

11/20/14

i a [Equivalence

= O 5 equivalence is the smallest
congruence containing o equivalence
and reduction

= A term is in normal form if no subterm
iS a equivalent to a term that can be p
reduced

= Hard fact (Church-Rosser): if e, and e,
are off-equivalent and both are normal
forms, then they are o equivalent

11/20/14 25

i Order of Evaluation

= Not all terms reduce to normal forms

= Not all reduction strategies will produce
a normal form if one exists

11/20/14

26

i Lazy evaluation:

= Always reduce the left-most application
in @ top-most series of applications (i.e.
Do not perform reduction inside an
abstraction)

= Stop when term is not an application, or

left-most application is not an
application of an abstraction to a term

11/20/14 27

i Example 1

s (AZ. (AX X)) (MY YY) (hy.yy))
= Lazy evaluation:

= Reduce the left-most application:

=(AZ. (A X X)) (MY YY) (hy.yY))
--B--> (A X. X)

11/20/14

28

i Eager evaluation

= (Eagerly) reduce left of top application
to an abstraction

= Then (eagerly) reduce argument
= Then p-reduce the application

11/20/14

29

i Example 1

= (A Z. (M)A Y. YY) (hy.yY))
= Eager evaluation:

= Reduce the rator of the top-most application to
an abstraction: Done.

= Reduce the argument:

s (AZ.(AXX)D)AY. YY) (LY. yy))
B> (A Z. (X X))(A Y. YY) (L y.yy))
B> (A Z. (M X XA Y. YY) My yy))...

11/20/14 30

i Example 2

s (AX. XX)(AY. VYY) (Az 2))
= Lazy evaluation:

(AX. X X)(AY.VY) Nz 2)-—-B-->

11/20/14

31

i Example 2

s (AX. XX)(AY. VYY) (Az 2))
= Lazy evaluation:

O %X XD Y. v Y) O z. 2)) --B-->

11/20/14

32

ﬁ Example 2

s (AX. XX)(AY. VYY) (Az 2)
= Lazy evaluation:

M X X X)((Ay. Y y) (2. 2)) B>

(Ay.y Y)Yz 2)((hy.y V) (\z 2)

11/20/14 33

i Example 2

s (AX. XX)(AY. VYY) (Az 2)

= Lazy evaluation:

(A X. X X)((AY. YY)z 2)) --B-->

(Ay.y y) (hz 2)

11/20/14

(Ay.y Y)(hz2)

34

i Example 2

s (X XX)((AMY. YY) Mz 2))
= Lazy evaluation:

(A X. X X)(AY- YY) (\z 2)) --p-->
(My.YIM) vz 2) (My.y ¥) (hz 2))

11/20/14 35

i Example 2

s (AX.XX)((MY. VYY) (A 2z 2)

= Lazy evaluation:

(A X x X)N(Ay.yy) Mz 2)) --B-->

(v y-Y) e z.2) (Ly.y y) (2 2))
B> (A z.Z)[(A z. (A y.y v) (M 2z 2))

11/20/14

36

i Example 2

s (AX.XX)((MY. VYY) (Ahz 2)
= Lazy evaluation:

(AX. x xX)(AY. YY) (Az 2))--B-->
(Ay.y y)(Az. z)) (Ay.y ¥) (A z 2))
~-B--> (A z.2) (A 2. 2))(L Y.y ¥) (A2 2))

11/20/14 37

i Example 2

s (AX.XX)((MY. VYY) (Ahz 2)

= Lazy evaluation:

(A X x X (A y.yYy) Az 2)) --B-->

(Ay.y y)(Az.2))(Ay.y V) (AZ 2))
B> (M z.[2)) (A z. 2))(hy.y ¥) (M2 2))

11/20/14 38

i Example 2

s (AX.XX)((MY. VYY) (Ahz 2)
= Lazy evaluation:
(A X x X (A y.yYy) Az 2)) --B-->

(Ay.y y)(Az. z))(Ay.y ¥v) (Az 2))

—-p--> (A z.[z]) L z. 2)((hy. y ¥) (A 2z 2))
B-->|(Az. Z)(Ay.y y) (hz 2))

11/20/14 39

i Example 2

s (AX. XX)(AY. VYY) (Az 2))
= Lazy evaluation:

(A XX X)(AY. YY) Mz 2) --p-->
(Ay.yy)rzz)(Ay.y V) (hz 2)

B> ((Mz.2) 0z 2)((My. Yy ¥V) (2 2)
--p--> (A z.[Z) (Ly.y ¥v) Az 2)) --B-->
Ay.y y)(hz2)

11/20/14 40

ﬁ Example 2

= (A X XXM Y. YY) (MzZ. 2))
= Lazy evaluation:

(A x.x x)((Ay.yy) Az 2)) --f-->
A y.y y) (2. D)) (My.y y) (h2z2))

—B=>{(hz.2) (Az.2)(Ay. Y V) (M2 2))
g3 (A z. (LY. Yy Y) (A2 2)) ~-p-->
\|_(ky. y y) Az 2)]

11/20/14 41

ﬁ Example 2

= (A X XXM Y. YY) (MzZ. 2))
= Lazy evaluation:

(A x.x x)((Ay.yy) Az 2)) --f-->
A y.y y) (2. D)) (My.y y) (h2z2))

—B=>{(hz.2) (Az.2)(Ay. Y V) (M2 2))
g3 (A z. (LY. Yy Y) (A2 2)) ~-p-->
\|_(ky. y Y)(Az.Z2) B~y Mz Z

11/20/14 42

i Example 2

s (AX.XX)((AY. YY) (A z 2))
= Eager evaluation:

(A x. x X)|((ALy.yY) (A 2z 2))=-p-->

(Ax.x X)|[((AMz.2) Mz 2))=p-->
(A x. X X)(\z. 2)|--B-->
(LNz.2) (MLz2.2) —-p--> NZ.Z

11/20/14 43

