# Programming Languages and Compilers (CS 421)



Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

11/20/14



#### Lambda Calculus - Motivation

- Aim is to capture the essence of functions, function applications, and evaluation
- λ-calculus is a theory of computation
- "The Lambda Calculus: Its Syntax and Semantics". H. P. Barendregt. North Holland, 1984

11/20/14 2



#### Lambda Calculus - Motivation

- All sequential programs may be viewed as functions from input (initial state and input values) to output (resulting state and output values).
- λ-calculus is a mathematical formalism of functions and functional computations
- Two flavors: typed and untyped

11/20/14



# Untyped $\lambda$ -Calculus

- Only three kinds of expressions:
  - Variables: x, y, z, w, ...
  - Abstraction: λ x. e

(Function creation, think fun  $x \rightarrow e$ )

■ Application: e<sub>1</sub> e<sub>2</sub>

11/20/14 4



#### Untyped λ-Calculus Grammar

- Formal BNF Grammar:
  - <expression> ::= <variable>

| <abstraction>

| <application>

| (<expression>)

- <abstraction>
  - ::=  $\lambda$ <variable>.<expression>
- <application>
  - ::= <expression> <expression>

11/20/14



# Untyped λ-Calculus Terminology

- Occurrence: a location of a subterm in a term
- Variable binding: λ x. e is a binding of x in e
- Bound occurrence: all occurrences of x in λ x. e
- Free occurrence: one that is not bound
- Scope of binding: in  $\lambda$  x. e, all occurrences in e not in a subterm of the form  $\lambda$  x. e' (same x)
- Free variables: all variables having free occurrences in a term

11/20/14



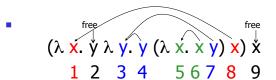
Label occurrences and scope:

$$(\lambda x. y \lambda y. y (\lambda x. x y) x) x$$
  
1 2 3 4 5 6 7 8 9

11/20/14



Label occurrences and scope:



11/20/14 8



# Untyped $\lambda$ -Calculus

- How do you compute with the λ-calculus?
- Roughly speaking, by substitution:
- $(\lambda x. e_1) e_2 \Rightarrow * e_1 [e_2/x]$
- \* Modulo all kinds of subtleties to avoid free variable capture

11/20/14



# Transition Semantics for $\lambda$ -Calculus

$$\frac{E \rightarrow E''}{E E' \rightarrow E'' E'}$$

Application (version 1 - Lazy Evaluation)

$$(\lambda \, X \, . \, E) \, E' --> E[E'/X]$$

Application (version 2 - Eager Evaluation)

$$\frac{E' --> E''}{(\lambda x \cdot E) E' --> (\lambda x \cdot E) E''}$$

$$\overline{(\lambda \ X \ . \ E) \ V --> E[\ V/x]}$$
  
V - variable or abstraction (value)

11/20/14 10



#### How Powerful is the Untyped $\lambda$ -Calculus?

- The untyped λ-calculus is Turing Complete
  - Can express any sequential computation
- Problems:
  - How to express basic data: booleans, integers, etc?
  - How to express recursion?
  - Constants, if\_then\_else, etc, are conveniences; can be added as syntactic sugar

11/20/14

11



# Typed vs Untyped $\lambda$ -Calculus

- The pure λ-calculus has no notion of type: (f f) is a legal expression
- Types restrict which applications are valid
- Types are not syntactic sugar! They disallow some terms
- Simply typed λ-calculus is less powerful than the untyped λ-Calculus: NOT Turing Complete (no recursion)

11/20/14 12



#### Uses of λ-Calculus

- Typed and untyped λ-calculus used for theoretical study of sequential programming languages
- Sequential programming languages are essentially the λ-calculus, extended with predefined constructs, constants, types, and syntactic sugar
- Ocaml is close to the λ-Calculus:

fun x -> exp --> 
$$\lambda$$
 x. exp  
let x =  $e_1$  in  $e_2$  -->  $(\lambda$  x.  $e_2)e_1$ 

11/20/14

13



## $\alpha$ Conversion

α-conversion:

$$\lambda$$
 x. exp -- $\alpha$ -->  $\lambda$  y. (exp [y/x])

- Provided that
  - 1. y is not free in exp
  - No free occurrence of x in exp becomes bound in exp when replaced by y

11/20/14 14



# α Conversion Non-Examples

- 1. Error: y is not free in termsecond
  - $\lambda x. x y \longrightarrow \lambda y. y y$
- 2. Error: free occurrence of x becomes bound in wrong way when replaced by y

$$\lambda x. \lambda y. x y \rightarrow x \rightarrow x \rightarrow \lambda y. \lambda y. y y$$
  
exp  $exp[y/x]$ 

But  $\lambda$  x. ( $\lambda$  y. y) x -- $\alpha$ -->  $\lambda$  y. ( $\lambda$  y. y) y And  $\lambda$  y. ( $\lambda$  y. y) y -- $\alpha$ -->  $\lambda$  x. ( $\lambda$  y. y) x

11/20/14 15



#### Congruence

- Let ~ be a relation on lambda terms. ~ is a congruence if
- it is an equivalence relation
- If  $e_1 \sim e_2$  then
  - $(e e_1) \sim (e e_2)$  and  $(e_1 e) \sim (e_2 e)$
  - $\lambda$  x.  $e_1 \sim \lambda$  x.  $e_2$

11/20/14 16



#### $\alpha$ Equivalence

- α equivalence is the smallest congruence containing α conversion
- One usually treats  $\alpha$ -equivalent terms as equal i.e. use  $\alpha$  equivalence classes of terms

11/20/14 17



#### Example

Show:  $\lambda x$ . ( $\lambda y$ . y x)  $x \sim \alpha \sim \lambda y$ . ( $\lambda x$ . x y) y

- $\lambda$  x. ( $\lambda$  y. y x) x -- $\alpha$ -->  $\lambda$  z. ( $\lambda$  y. y z) z so  $\lambda$  x. ( $\lambda$  y. y x) x  $\sim$  $\alpha$ ~  $\lambda$  z. ( $\lambda$  y. y z) z
- (λ y. y z) --α--> (λ x. x z) so (λ y. y z) ~α~ (λ x. x z) so λ z. (λ y. y z) z ~α~ λ z. (λ x. x z) z
- λ z. (λ x. x z) z --α--> λ y. (λ x. x y) y so
   λ z. (λ x. x z) z ~α~ λ y. (λ x. x y) y

18

■ λ x. (λ y. y x) x ~α~ λ y. (λ x. x y) y

11/20/14



#### Substitution

- $\begin{tabular}{ll} \blacksquare & Defined on $\alpha$-equivalence classes of terms \end{tabular}$
- P [N / x] means replace every free occurrence of x in P by N
  - P called *redex*; N called *residue*
- Provided that no variable free in P becomes bound in P [N / x]
  - Rename bound variables in P to avoid capturing free variables of N

11/20/14 19



# Substitution

- x [N / x] = N
- $y[N/x] = y \text{ if } y \neq x$
- $(e_1 e_2) [N / x] = ((e_1 [N / x]) (e_2 [N / x]))$
- $(\lambda x. e) [N / x] = (\lambda x. e)$
- $(\lambda y. e) [N / x] = \lambda y. (e [N / x])$ provided  $y \neq x$  and y not free in N
  - Rename y in redex if necessary

11/20/14 20



#### Example

$$(\lambda y. y z) [(\lambda x. x y) / z] = ?$$

- Problems?
  - z in redex in scope of y binding
  - y free in the residue
- (λ y. y z) [(λ x. x y) / z] --α-->
   (λ w.w z) [(λ x. x y) / z] =
   λ w. w (λ x. x y)

11/20/14



# Example

- Only replace free occurrences
- $(\lambda y. y z (\lambda z. z)) [(\lambda x. x) / z] =$   $\lambda y. y (\lambda x. x) (\lambda z. z)$

Not

$$\lambda$$
 y. y ( $\lambda$  x. x) ( $\lambda$  z. ( $\lambda$  x. x))

11/20/14 22



#### β reduction

- β Rule: ( $\lambda$  x. P) N --β--> P [N /x]
- Essence of computation in the lambda calculus
- Usually defined on α-equivalence classes of terms

11/20/14

# •

21

23

#### Example

- (λ z. (λ x. x y) z) (λ y. y z)
- $--\beta-->(\lambda x. x y)(\lambda y. y z)$
- --β--> (λ y. y z) y --β--> y z
- **(λ x. x x)** (λ x. x x)
- $--\beta--> (\lambda x. x x) (\lambda x. x x)$
- $--\beta--> (\lambda x. x x) (\lambda x. x x) --\beta--> ....$

11/20/14

24



#### $\alpha$ $\beta$ Equivalence

- α β equivalence is the smallest congruence containing α equivalence and β reduction
- A term is in *normal form* if no subterm is  $\alpha$  equivalent to a term that can be  $\beta$  reduced
- Hard fact (Church-Rosser): if  $e_1$  and  $e_2$  are  $\alpha\beta$ -equivalent and both are normal forms, then they are  $\alpha$  equivalent

11/20/14 25



# Order of Evaluation

- Not all terms reduce to normal forms
- Not all reduction strategies will produce a normal form if one exists

11/20/14 26



#### Lazy evaluation:

- Always reduce the left-most application in a top-most series of applications (i.e. Do not perform reduction inside an abstraction)
- Stop when term is not an application, or left-most application is not an application of an abstraction to a term

11/20/14 27



# Example 1

- (λ z. (λ x. x)) ((λ y. y y) (λ y. y y))
- Lazy evaluation:
- Reduce the left-most application:
- (λ z. (λ x. x)) ((λ y. y y) (λ y. y y))
  --β--> (λ x. x)

11/20/14 28



#### **Eager evaluation**

- (Eagerly) reduce left of top application to an abstraction
- Then (eagerly) reduce argument
- Then β-reduce the application



#### Example 1

- (λ z. (λ x. x))((λ y. y y) (λ y. y y))
- Eager evaluation:
- Reduce the rator of the top-most application to an abstraction: Done.
- Reduce the argument:
- **•** (λ z. (λ x. x))((λ y. y y) (λ y. y y))
- $-\beta->(\lambda z. (\lambda x. x))((\lambda y. y y) (\lambda y. y y))$
- $--\beta$ --> (λ z. (λ x. x))((λ y. y y) (λ y. y y))...

11/20/14 29

11/20/14

30



- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

( $\lambda$  x. x x )(( $\lambda$  y. y y) ( $\lambda$  z. z)) -- $\beta$ -->

11/20/14

31



# Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda \times X \times X)((\lambda y. y y) (\lambda z. z)) --\beta-->$ 

11/20/14 32



#### Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda \times X \times X)((\lambda y. y y) (\lambda z. z)) --\beta --> ((\lambda y. y y) (\lambda z. z)) ((\lambda y. y y) (\lambda z. z))$ 

11/20/14

33



# Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

(λ x. x x)((λ y. y y) (λ z. z)) --β--> ((λ y. y y) (λ z. z)) ((λ y. y y) (λ z. z)

11/20/14 34



## Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda x. x x)((\lambda y. y y) (\lambda z. z)) --\beta-->$  $((\lambda y. y y) (\lambda z. z)) ((\lambda y. y y) (\lambda z. z))$ 

11/20/14

35

# Ex

#### Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda x. x x)((\lambda y. y y) (\lambda z. z)) --\beta--> ((\lambda y. y y) (\lambda z. z)) ((\lambda y. y y) (\lambda z. z)) (-\beta--> ((\lambda z. z) (\lambda z. z))((\lambda y. y y) (\lambda z. z))$ 

11/20/14 36



- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

```
(\lambda x. x x)((\lambda y. y y) (\lambda z. z)) --\beta-->

((\lambda y. y y) (\lambda z. z)) ((\lambda y. y y) (\lambda z. z))

--\beta--> ((\lambda z. z) (\lambda z. z))((\lambda y. y y) (\lambda z. z))
```

11/20/14

37



# Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

$$(λ x. x x)((λ y. y y) (λ z. z)) --β-->$$
 $((λ y. y y) (λ z. z)) ((λ y. y y) (λ z. z))$ 
 $-β--> ((λ z. z)) ((λ y. y y) (λ z. z))$ 

11/20/14 38



#### Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

$$(λ x. x x)((λ y. y y) (λ z. z)) --β-->$$
 $((λ y. y y) (λ z. z)) ((λ y. y y) (λ z. z))$ 
 $--β--> ((λ z. z) ((λ y. y y) (λ z. z))$ 
 $-β--> (λ z. z) ((λ y. y y) (λ z. z))$ 

11/20/14

39

41



# Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda \ X. \ X \ )((\lambda \ y. \ y \ y) \ (\lambda \ z. \ z)) --β-->$   $((\lambda \ y. \ y \ y \ ) \ (\lambda \ z. \ z)) \ ((\lambda \ y. \ y \ y \ ) \ (\lambda \ z. \ z))$   $--β--> \ ((\lambda \ z. \ z \ ) \ ((\lambda \ y. \ y \ y \ ) \ (\lambda \ z. \ z))$   $--β--> \ (\lambda \ z. \ z) \ ((\lambda \ y. \ y \ y \ ) \ (\lambda \ z. \ z))$   $--β--> \ (\lambda \ y. \ y \ y \ ) \ (\lambda \ z. \ z)$ 

11/20/14 40



#### Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

$$(\lambda x. x x)((\lambda y. y y) (\lambda z. z)) --\beta--> ((\lambda y. y y) (\lambda z. z)) ((\lambda y. y y) (\lambda z. z))$$

$$((\lambda z. z) (\lambda z. z) ((\lambda y. y y) (\lambda z. z))$$

$$(-\beta--> (\lambda z. z) ((\lambda y. y y) (\lambda z. z)) --\beta--> (\lambda y. y y) (\lambda z. z)$$

11/20/14

# Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

$$(\lambda x. x x)((\lambda y. y y) (\lambda z. z))$$
 --β-->
$$([\lambda y. y y) (\lambda z. z)] ((\lambda y. y y) (\lambda z. z))$$
--β-->
$$([\lambda z. z) (\lambda z. z)((\lambda y. y y) (\lambda z. z))$$
--β-->
$$([\lambda y. y y) (\lambda z. z)]$$
--β-->
$$([\lambda y. y y) (\lambda z. z)]$$
--β-->

11/20/14

42



- (λ x. x x)((λ y. y y) (λ z. z))
- Eager evaluation:

$$(λ x. x x)$$
  $((λ y. y y) (λ z. z))$  --β-->  
 $(λ x. x x)$   $((λ z. z) (λ z. z))$  --β-->  
 $(λ x. x x)$   $(λ z. z)$  --β-->  
 $(λ z. z) (λ z. z)$  --β-->  $λ z. z$ 

11/20/14 43