Programming Languages and
Compilers (CS 421)

»

~
Elsa L Gunter
2112 SC, UluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/20/14 1

i Lambda Calculus - Motivation

= Aim is to capture the essence of
functions, function applications, and
evaluation

= A-calculus is a theory of computation

= “The Lambda Calculus: Its Syntax and
Semantics”. H. P. Barendregt. North
Holland, 1984

11/20/14 2

i Lambda Calculus - Motivation

» All sequential programs may be viewed
as functions from input (initial state and
input values) to output (resulting state
and output values).

= A-calculus is a mathematical formalism
of functions and functional
computations

= Two flavors: typed and untyped

11/20/14 3

i Untyped A-Calculus

= Only three kinds of
expressions:

«Variables: x, y, z, w, ...

= Abstraction: A x. e
(Function creation, think fun x -> €)

= Application: e, e,

11/20/14 4

i Untyped A-Calculus Grammar

= Formal BNF Grammar:
= <expression> ::= <variable>
| <abstraction>
| <application>
| (<expression>)
= <abstraction>
::= A<variable>.<expression>
= <application>
= <expression> <expression>

11/20/14 5

i Untyped A-Calculus Terminology

= Occurrence: a location of a subterm in a
term

= Variable binding: A x. e is a binding of x in e

= Bound occurrence: all occurrences of x in
AX. e

= Free occurrence: one that is not bound

= Scope of binding: in A x. €, all occurrences in
e)not in a subterm of the form A x. &’ (same
X

= Free variables: all variables having free
occurrences in a term

11/20/14 6

i Example

= Label occurrences and scope:

(AX.YyAY. Yy (MX. XY) X)X
12 34 56789

11/20/14 7

i Example

= Label occurrences and scope:

[] fre free
()\x.yxy./\y(XX/.\xy)X)i
12 34 56789

11/20/14 8

i Untyped A-Calculus

= How do you compute with the
A\-calculus?
= Roughly speaking, by substitution:

s (AX.e)) e, =*e [e,/X]

= * Modulo all kinds of subtleties to avoid
free variable capture

11/20/14 9

‘ Transition Semantics for A-Calculus

E->E"’
EE -->EF
= Application (version 1 - Lazy Evaluation)
(M x.E) E --> HE /X]
= Application (version 2 - Eager Evaluation)
E -->E"’
(Ax.E)E -->(0x.E)E"’

(Mx.E)V--> V/X]

V - variable or abstraction (value)

11/20/14 10

!-’ How Powerful is the Untyped \-Calculus?

= The untyped A-calculus is Turing
Complete
= Can express any sequential computation
= Problems:

= How to express basic data: booleans,
integers, etc?
= How to express recursion?

= Constants, if_then_else, etc, are
conveniences; can be added as syntactic
sugar

11/20/14 11

ﬁyped vs Untyped A-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT
Turing Complete (no recursion)

11/20/14 12

i Uses of A-Calculus

= Typed and untyped A-calculus used for
theoretical study of sequential
programming languages
= Sequential programming languages are
essentially the A-calculus, extended with
predefined constructs, constants, types,
and syntactic sugar
= Ocaml is close to the A-Calculus:
fun x -> exp --> A X. exp
letx = e, ine,-> (A X. &)e,

11/20/14 13

i o Conversion

= o-conversion:

A X. exp —-a--> A Y. (exp [y/x])
= Provided that

1.y is not free in exp

2. No free occurrence of x in exp
becomes bound in exp when
replaced by y

11/20/14 14

i*a Conversion Non-Examples

1. Error: y is not free in termsecond

A X. xy>s<> AY.YY
2. Error: free occurrence of x becomes
bound in wrong way when replaced by y
A X. 7»y.xy><> AY.AY.VY
exp exp[y/x]
But Ax. (Ay.y)Xx=—-a->Ay.(AY.Y)Y
AndAy. (LY. Y)Yy o> AX. (LY. y)X

11/20/14 15

ﬁongruence

= Let ~ be a relation on lambda
terms. ~ is a congruence if

= it is an equivalence relation

= If e, ~ e, then
= (eg) ~ (eegy)and (ee) ~ (e, €)
s AX. € ~AX €

11/20/14 16

ia Equivalence

= o equivalence is the smallest
congruence containing o
conversion

= One usually treats a-equivalent
terms as equal - i.e. use a
equivalence classes of terms

11/20/14 17

Example

Show: A X. (A Y. Yy X)X ~va~ Ay, (AX.XY)Y

s AX. (AY.YX)X-o—->Az.(AY.YZ)Z SO
AX.(AY.yX)X~a~hz. (AYy.yZ)z

s (MY. Y 2) o> (AX.XZ) SO
(My.yz) ~a~ (AX.XZ) SO
AMz.(hy.yz)z~o~v Az (MX.X2Z) Z

s AZ.(AX.XZ)Z-a-> LY. (AX.XY)Y SO
AMz.(AX.XZ)z~a~v hY. (A X XY)Y

B AX. (AY. Yy X)X ~oa~v AY. (A X XY)Y

11/20/14 18

i Substitution

= Defined on a-equivalence classes of
terms

= P [N/ x] means replace every free
occurrence of x in P by N
= P called redex; N called residue

= Provided that no variable free in P
becomes bound in P [N / x]

= Rename bound variables in P to avoid
capturing free variables of N

11/20/14 19

i Substitution

s X[N/x]=N
sY[N/x]=yify=x
= (e,) [N/x]=((e,[N/x])(e;[N/x]))
s(AX.€)[N/x]=(AX.€)
=(Ay.€)[IN/xI=ry.(e[N/x])
provided y = x and y not free in N
= Rename y in redex if necessary

11/20/14 20

#Example

(Ay.yz)[(Ax.xy)/z] =7
= Problems?
= Z in redex in scope of y binding
= y free in the residue
s (AYy.y2Z)[(MX. XY) /[Z] 0>
Aww2)[(AX.XYy)/ z] =
AW. W (AX XY)

11/20/14 21

:.‘ Example

= Only replace free occurrences

s(Ay.yz(Az.2)) [((Mx.X) [/ z] =
AY.Yy(AX.X) (Mz. 2)

Not
AY. Yy (AXx.xX) (A z. (MX. X))

11/20/14 22

i{% reduction

= pRule: (AX.P)N--p-->P[N/x]

= Essence of computation in the lambda
calculus

= Usually defined on a-equivalence
classes of terms

11/20/14 23

#Example

s(AzZ.(AX.xXy)z) (LY. Y 2)
B> (A X. xy) (MY Yy 2Z)
B> (hy.yz)y--p->yz

s (A X. XX) (A X XX)
--B--> (A X. X X) (A X. X X)
-=B--> (A X. X X) (A X. X X) ==B--> ...

11/20/14 24

i a B Equivalence

= o 3 equivalence is the smallest
congruence containing o. equivalence
and f reduction

= A term is in normal form if no subterm
is a equivalent to a term that can be p
reduced

= Hard fact (Church-Rosser): if e; and e,
are af-equivalent and both are normal
forms, then they are o equivalent

11/20/14

25

i Order of Evaluation

= Not all terms reduce to normal forms

= Not all reduction strategies will produce
a normal form if one exists

11/20/14 26

i Lazy evaluation:

= Always reduce the left-most application
in a top-most series of applications (i.e.
Do not perform reduction inside an
abstraction)

= Stop when term is not an application, or
left-most application is not an
application of an abstraction to a term

11/20/14

27

i Example 1

s(Az.(AXx. X)) (LY. yy) (hy.yy)
= Lazy evaluation:

= Reduce the left-most application:

s(MzZ.(AX. X)) (MY YY) (hy.yy)
--g--> (A X. X)

11/20/14 28

i Eager evaluation

= (Eagerly) reduce left of top application
to an abstraction

= Then (eagerly) reduce argument
= Then p-reduce the application

11/20/14

29

i Example 1

=Mz (A X)) Y- YY) My yy)
= Eager evaluation:

= Reduce the rator of the top-most application to
an abstraction: Done.

= Reduce the argument:

s (A (X XAy yY) ey yy))
=p-> (A Z. (M X XA Y. YY) Ay yy))
—p-> (A Z. A X XA Y- YY) (L y.yy))..

11/20/14 30

Elsa Gunter

i Example 2

s (AX. XX)((MY. YY) (Az 2)
= Lazy evaluation:

Ax.x X)(Ay.yYy) Az 2)) --p-->

11/20/14 31

i Example 2

s (AX. XX)((NY. YY) (Mz 2)
= Lazy evaluation:

O x4 Xy y y) (2. 2) -p-->

11/20/14 32

i Example 2

s (AX. XX)((AMY. YY) (M2 2)
= Lazy evaluation:

XX XA Y. YY) (hz 2)) --p-->
((vy.y y)Oz2)j((hy.y V) (rz2))

11/20/14 33

i Example 2

s (AX XX)((MY. YY) (Mz 2)
= Lazy evaluation:

(A x.x x)((hy.yy) (rz 2))--p-->
((vy.y y)z2)|(Ay.y V) (rz2)

11/20/14 34

i Example 2

= (A X XX) (Y. YY) Az 2)
= Lazy evaluation:

Ax.x X)(Ay.yYy) Az 2)) --p-->
((vy.YM)z2)((Ay.y V) (rz2)

11/20/14 35

i Example 2

= (A X XXN(MyY.yY) (hz 2))

= Lazy evaluation:

(A x.x x)(Ay.yy) Az 2)) --B-->
(YD) v z.2) ((Ly.y y) (A2 2))
~p-> (A z. z)[(h z. Z)((hy.y v) (hz 2))

11/20/14 36

i Example 2

s (AX. XX) (MY YY) (A z 2)

= Lazy evaluation:

(Ax.x x)(Ay.yy) (Mz. 2)) B>

(Ay.y y)(rz.2))((Ay.y v) Xz 2)
~p->|((rz.2) bz)Ny y ¥) (b2 2)

11/20/14 37

i Example 2

s (AX. XX)((MyY. YY) (M z 2)

= Lazy evaluation:

AX.x xX)(My.yYy) (Mz. 2) —-p—>
((Ay.yy)(rz.2)((Ay.y v)(hz 2)
B> ((rz.[z)) Az) (A y.y v) (A2 2))

11/20/14 38

i Example 2

e (AX. XX (MY YY) (A z 2)

= Lazy evaluation:

(Ax.x x)(hy.yy) (Az 2)) --p-->
((Ay.y y)(rz.2)) (Ay.y Y) (hz 2))

~-p--> (L z.[2) ez)y y v) (2. 2))
--p--> ((hy.y y)(L2z.2)

11/20/14 39

i Example 2

s (AX XX)((MY. YY) (Mz 2)
= Lazy evaluation:

Ax.x X)(Ay.yy) Az 2)--p-->
(Ay.y y)rz2)((Ay.y ¥v) (hz2)

“p->((hz.z)(hz))((Ay.y ¥V) (rz 2)
-p-->(hz.[Z) (Ay.y y) (Az 2)) --B-->
Ay.y y)(z2)

11/20/14 40

i Example 2

= (A X XXMy YY) (M z. 2))
= Lazy evaluation:

(Ax.x x)(Ay.yy) (hz 2)) --p-->
CK?» Y-y Y) Az 2)) (Ay.y y) (hz 2))

) (2.2 (Ay.y V) (M2 2)
~p-30z 2Ny y v) (h 2. 2) >

(hy.y y)(hz. 2)|

11/20/14 41

i Example 2

= (A X XXM Y- yy) (M2 2))
= Lazy evaluation:

(Ax.x x)(Ay.yy) (\z. 2)) —-p-—>
((I(k Y.y Y) (A z. D) ((hy.y y) (A2 2)

*"" --gl-((x 2.2) (hz. D) (hy.y V) (h2.2))
--f-- ((ny.y y) Oz 2) —-p-->

Ay.y Y)(Mz.2)vp~ Az Z

11/20/14 42

i Example 2

s(AX.XX)((AY. VYY) (Mz 2)
= Eager evaluation:

(A% x X)[((Ay. YY) (A 2z 2))==p-->
(Ax. x X)|[((Az.2) (\z 2))=p-->

(r x. x x)[(n z. 2)|--p-->
MNz.2)(Lz.2) B> NzZ.2Z

11/20/14 43

