Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata

 Whole family more of grammars and automata – covered in automata theory

Sample Grammar

 Language: Parenthesized sums of 0's and 1's

- <Sum> ::= 0
- <Sum >::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

BNF Grammars

- Start with a set of characters, a,b,c,...
 - We call these terminals
- Add a set of different characters, X,Y,Z,
 - We call these nonterminals
- One special nonterminal S called start symbol

BNF Grammars

BNF rules (aka productions) have form

$$X := y$$

where X is any nonterminal and y is a string of terminals and nonterminals

 BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

4

Sample Grammar

Terminals: 0 1 + () Nonterminals: <Sum> Start symbol = <Sum> <Sum> ::= 0 <Sum >::= 1 <Sum> ::= <Sum> + <Sum> <Sum> ::= (<Sum>) Can be abbreviated as <Sum> ::= 0 | 1 | <Sum> + <Sum> | ()

Given rules

$$X::= yZw$$
 and $Z::= v$
we may replace Z by v to say
 $X => yZw => yvw$

- Sequence of such replacements called derivation
- Derivation called *right-most* if always replace the right-most non-terminal

Start with the start symbol:

Pick a non-terminal

Pick a rule and substitute:

Pick a non-terminal:

•

BNF Derivations

Pick a rule and substitute:

Pick a non-terminal:

Pick a rule and substitute:

•

BNF Derivations

Pick a non-terminal:

Pick a rule and substitute:

Pick a non-terminal:

Pick a rule and substitute:

Pick a non-terminal:

4

BNF Derivations

Pick a rule and substitute

4

BNF Derivations

 \bullet (0 + 1) + 0 is generated by grammar

 The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol

Regular Grammars

- Subclass of BNF
- Only rules of form <nonterminal>::=<terminal><nonterminal>::=<terminal> or <nonterminal>::= ε
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)

Example

Regular grammar:

```
<Balanced> ::= $\( \) <Balanced> ::= 0<OneAndMore> <Balanced> ::= 1<ZeroAndMore> <OneAndMore> ::= 1<Balanced> <ZeroAndMore> ::= 0<Balanced>
```

 Generates even length strings where every initial substring of even length has same number of 0's as 1's

Extended BNF Grammars

- Alternatives: allow rules of from X::=y/z
 - Abbreviates X::= y, X::= z
- Options: X := y[v]z
 - Abbreviates X::= yvz, X::= yz
- Repetition: $X := y\{v\}*z$
 - Can be eliminated by adding new nonterminal V and rules X::= yz, X::=yVz, V::= v, V::= W

Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it

Example

Consider grammar:

Problem: Build parse tree for 1 * 1 + 0 as an <exp>

■ 1 * 1 + 0: <exp>

<exp> is the start symbol for this parse
 tree

E

Example cont.

Use rule: <exp> ::= <factor>

Exar

Example cont.

Use rule: <factor> ::= <bin> * <exp>

-

Example cont.


```
Use rules: <bin> ::= 1 and <br/> <exp> ::= <factor> +
```

Use rule: <factor> ::= <bin>

Use rules: <bin> ::= 1 | 0

Fringe of tree is string generated by grammar

Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Recall grammar:

```
<exp> ::= <factor> | <factor> + <factor>
                         <factor> ::= <bin> | <bin> * <exp>
                         <br/>

type exp = Factor2Exp of factor
                                                                                                                                 | Plus of factor * factor
                          and factor = Bin2Factor of bin
                                                                                                                                                              | Mult of bin * exp
                          and bin = Zero | One
```

10/28/14

Example cont.

10/28/14

Example cont.

Can be represented as

```
Factor2Exp
(Mult(One,
Plus(Bin2Factor One,
Bin2Factor Zero)))
```


Ambiguous Grammars and Languages

- A BNF grammar is ambiguous if its language contains strings for which there is more than one parse tree
- If all BNF's for a language are ambiguous then the language is inherently ambiguous

10/28/14

Example: Ambiguous Grammar

$$0 + 1 + 0$$

What is the result for:

$$3 + 4 * 5 + 6$$

What is the result for:

$$3 + 4 * 5 + 6$$

Possible answers:

- = 41 = ((3 + 4) * 5) + 6
- 47 = 3 + (4 * (5 + 6))
- 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)

What is the value of:

$$7 - 5 - 2$$

What is the value of:

$$7 - 5 - 2$$

- Possible answers:
 - In Pascal, C++, SML assoc. left

$$7-5-2=(7-5)-2=0$$

In APL, associate to right

$$7-5-2=7-(5-2)=4$$

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator assoicativity

Not the only sources of ambiguity

Disambiguating a Grammar

 Given ambiguous grammar G, with start symbol S, find a grammar G' with same start symbol, such that

language of G = language of G'

- Not always possible
- No algorithm in general

Disambiguating a Grammar

- Idea: Each non-terminal represents all strings having some property
- Identify these properties (often in terms of things that can't happen)
- Use these properties to inductively guarantee every string in language has a unique parse

10/28/14

Ambiguous grammar:

String with more then one parse:

$$0 + 1 + 0$$
 $1 * 1 + 1$

Sourceof ambiuity: associativity and precedence

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator assoicativity

Not the only sources of ambiguity

How to Enforce Associativity

 Have at most one recursive call per production

 When two or more recursive calls would be natural leave right-most one for right assoicativity, left-most one for left assoiciativity

Becomes

```
<Sum> ::= <Num> | <Num> + <Sum>
```

Num> ::= 0 | 1 | (<Sum>)

 Operators of highest precedence evaluated first (bind more tightly).

 Precedence for infix binary operators given in following table

Needs to be reflected in grammar

Precedence Table - Sample

	Fortan	Pascal	C/C++	Ada	SML
highest	**	*, /, div, mod	++,	**	div, mod, / , *
	*,/	+, -	*,/,	*, /, mod	+,-,
	+,-		+, -	+, -	::

10/4/07

First Example Again

- In any above language, 3 + 4 * 5 + 6= 29
- In APL, all infix operators have same precedence
 - Thus we still don't know what the value is (handled by associativity)
- How do we handle precedence in grammar?

Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:

Becomes