
9/25/14 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/25/14 2

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

n  How to count the number of variables in an exp?

9/25/14 3

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

n  How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with VarExp x ->
 | ConstExp c ->
 | BinOpAppExp (b, e1, e2) ->
 | FunExp (x,e) ->
 | AppExp (e1, e2) ->

9/25/14 4

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

n  How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with VarExp x -> 1
 | ConstExp c -> 0
 | BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
 | FunExp (x,e) -> 1 + varCnt e
 | AppExp (e1, e2) -> varCnt e1 + varCnt e2

Your turn now

Try Problem 3 on MP5

9/25/14 5

9/25/14 6

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
 | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree
 | More of ('a tree * 'a treeList);;
type 'a tree = TreeLeaf of 'a | TreeNode of 'a

treeList
and 'a treeList = Last of 'a tree | More of ('a

tree * 'a treeList)

9/25/14 7

Mutually Recursive Types - Values

let tree =
 TreeNode
 (More (TreeLeaf 5,
 (More (TreeNode
 (More (TreeLeaf 3,
 Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))));;

9/25/14 8

Mutually Recursive Types - Values

 val tree : int tree =
 TreeNode
 (More
 (TreeLeaf 5,
 More
 (TreeNode (More (TreeLeaf 3, Last

(TreeLeaf 2))), Last (TreeLeaf 7))))

9/25/14 9

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

 5 More Last 7

 TreeLeaf TreeLeaf

 3 2

9/25/14 10

Mutually Recursive Types - Values

A more conventional picture

 5 7

 3 2

9/25/14 11

Mutually Recursive Functions

let rec fringe tree =
 match tree with (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
 match tree_list with (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

9/25/14 12

Mutually Recursive Functions

fringe tree;;
-  : int list = [5; 3; 2; 7]

9/25/14 13

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

9/25/14 14

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =
 match t with TreeLeaf _ ->
 | TreeNode ts ->

9/25/14 15

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts

9/25/14 16

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts
and treeList_size ts =

9/25/14 17

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts
and treeList_size ts =
 match ts with Last t ->
 | More t ts’ ->

9/25/14 18

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts
and treeList_size ts =
 match ts with Last t -> tree_size t
 | More t ts’ -> tree_size t + treeList_size ts’

9/25/14 19

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts
and treeList_size ts =
 match ts with Last t -> tree_size t
 | More t ts’ -> tree_size t + treeList_size ts’

9/25/14 20

Nested Recursive Types

type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree

list);;
type 'a labeled_tree = TreeNode of ('a

* 'a labeled_tree list)

9/25/14 21

Nested Recursive Type Values

let ltree =
 TreeNode(5,
 [TreeNode (3, []);
 TreeNode (2, [TreeNode (1, []);
 TreeNode (7, [])]);
 TreeNode (5, [])]);;

9/25/14 22

Nested Recursive Type Values

val ltree : int labeled_tree =
 TreeNode
 (5,
 [TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
 TreeNode (5, [])])

9/25/14 23

Nested Recursive Type Values

Ltree = TreeNode(5)

 :: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

 [] :: :: [] []

 TreeNode(1) TreeNode(7)

 [] []

9/25/14 24

Nested Recursive Type Values

5

3 2 5

1 7

9/25/14 25

Mutually Recursive Functions

let rec flatten_tree labtree =
 match labtree with TreeNode (x,treelist)
 -> x::flatten_tree_list treelist
 and flatten_tree_list treelist =
 match treelist with [] -> []
 | labtree::labtrees
 -> flatten_tree labtree
 @ flatten_tree_list labtrees;;

9/25/14 26

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]
n  Nested recursive types lead to mutually

recursive functions

9/25/14 27

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
 [1; 1; 1; 1; ...]
match ones with x::_ -> x;;
Characters 0-25:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
 match ones with x::_ -> x;;
 ^^^^^^^^^^^^^^^^^^^^^^^^^
- : int = 1

9/25/14 28

Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)
 and tree_list = [lab_tree; lab_tree];;
val lab_tree : int labeled_tree =
 TreeNode (2, [TreeNode(...); TreeNode(...)])
val tree_list : int labeled_tree list =
 [TreeNode (2, [TreeNode(...);

TreeNode(...)]);
 TreeNode (2, [TreeNode(...);

TreeNode(...)])]

9/25/14 29

Infinite Recursive Values

match lab_tree
 with TreeNode (x, _) -> x;;
- : int = 2

9/25/14 30

Records

n  Records serve the same programming
purpose as tuples

n  Provide better documentation, more
readable code

n  Allow components to be accessed by label
instead of position
n  Labels (aka field names must be unique)
n  Fields accessed by suffix dot notation

9/25/14 31

Record Types

n  Record types must be declared before they
can be used in OCaml

type person = {name : string; ss : (int * int
* int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

n  person is the type being introduced
n  name, ss and age are the labels, or fields

9/25/14 32

Record Values

n  Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244)};;

val teacher : person =
 {name = "Elsa L. Gunter"; ss = (119, 73,

6244); age = 102}

9/25/14 33

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"
val age : int = 102
val s3 : int = 6244

9/25/14 34

Record Field Access

let soc_sec = teacher.ss;;
val soc_sec : int * int * int = (119,

73, 6244)

9/25/14 35

Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =
 {name = "Joseph Martins"; ss = (325, 40,

1276); age = 22}
student = teacher;;
- : bool = false

9/25/14 36

New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>
birthday teacher;;
- : person = {name = "Elsa L. Gunter"; ss =

(119, 73, 6244); age = 103}

9/25/14 37

New Records from Old

let new_id name soc_sec person =
 {person with name = name; ss = soc_sec};;
val new_id : string -> int * int * int -> person

-> person = <fun>
new_id "Guieseppe Martin" (523,04,6712)

student;;
- : person = {name = "Guieseppe Martin"; ss

= (523, 4, 6712); age = 22}

