Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/17/14

i Mapping Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh):: (map ft);;
val map : ('a-> 'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-intlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
cint list =[12; 7; 4; 2; 1, 0; 0]

9/17/14 2

i Mapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with[]->1[1]
| X::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doublelist [2;3;4];;
- 1 int list = [4; 6; 8]

9/17/14

ﬁ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelist [2:3;4];;
- 1 int list = [4; 6; 8]

= Same function, but no explicit rec

9/17/14

+

Your turn now

Try Problem 1 on MP4

ﬁ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4:6];;
-1 int = 48
= Computes (2 * (4 * (6 *1)))

9/17/14 6

ﬁ Folding Functions over Lists

| How are the following functions similar?

let rec sumList list = match list with
[1-> 0| x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>

sumlList [2;3;4];;

-:int=9

let rec multList list = match list with
[1-> 1] x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multList [2;3;4];;

- int = 24

9/17/14

i Folding Functions over Lists

| How are the following functions similar?

let rec sumList list = match list with
[]-> X::XS -> X + sumList xs;;
val sumList Tintldist -> int = <fun>

sumlList [2;3:4];;
Cint= 9 ‘Base Case

let rec multbstlist = match list with
[1->11]] x::xs -> x * multList xs;;
val multList : int list -> int = <fun>

multList [2;3:4];;
-rint = 24

9/17/14

ﬁ Folding Functions over Lists

| How are the following functions similar? |
let rec sumList list = match list with
[]->[0]] x::xs -> x +[sumList xs};
val sumList : int list -> int = <fun>‘\
sumlList [2;3;4];;
-:int=9
let rec multList list = match list vfch
[]->[1]] x::xs -> x *|multList xs};
val multList : int list -> int = <fun>
multList [2;3;4];;
-1 int =24

‘Recursive Call ‘

9/17/14 9

* Folding Functions over Lists

| How are the following functions similar? |
let rec sumList list = match list with
[]1->[0]] x::xs ->[x]+[sumList xs};
val sumList : int list -> Int= n>
sumlist [2;3;4];; ‘Head Element‘

-:int=9
let rec multList list = match list with
[]->[1]] x::xs ->[x] * [multList xs};

val multList : int list -> int = <fun>
multList [2;3;4];;
-rint = 24

9/17/14 10

ﬁ Folding Functions over Lists

| How are the following functions similar? |
let rec sumList list = match list with

[] ->@| X::XS ->+|sumList xs|;|;

val sumList : int list -> ink= <fun>

sumlList [2;3;4];; Combing Operation

-:int=9
let rec multList list = maatch list with
[1->[1]] x::xs -3 * [multList xs};
val multList : int list -> int = <fun>

multList [2;3;4];;
- int = 24

9/17/14

i Folding Functions over Lists

| How are the following functions similar? |
let rec sumList list = match list with

[1->[0]1 x::xs ->[x|+ IR

val sumList : int list -> ink= <fun>

sumlList [2;3;4];; Combing Operation

-:int=9
let rec multList list = maatch list with
[1->[T]] x::xs ->[x * e
val multList : int list -> int = <fun>

multList [2;3;4];;
- int = 24R

9/17/14

ﬁ Recursing over lists

let rec fold_right f list b =
match list
with []-> b The Primitive
| (X :: xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right : ('a->'b->'b)->"alist->'b->"b =

<fun>
fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
0:;

therehi- : unit = ()

9/17/14 13

ﬁ Folding Recursion

= multList folds to the right
= Same as:
let multList list =
List.fold_right
(fun x -> fun rv -> X * rv)
list 1;;
val multList : int list -> int = <fun>
multList [2;4,6];;
- 1 int = 48

9/17/14 14

ﬁ Encoding Recursion with Fold

let rec append listl list2 = match listl with
[]1-> list2 | x::xs -> x :: append xs list2;;
val ap[?énd : 'a list -> 'a‘list ->\§ ist = <fun>

| Operation || Recursive Call |

| Base Case

let append listl list
fold_right (fun x rv -> x :: rv) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;
-:intlist =[1; 2; 3; 4; 5; 6]

9/17/14 15

+

Your turn now

Try Problem 2 on MP4

ﬁ Question

let rec length | =
match | with [] -> 0
| (@ :: bs) -> 1 + length bs

= \How do you write length with fold_right, but
no explicit recursion?

9/17/14 17

ﬁ Question

let rec length | =
match | with [] -> 0
| (@ :: bs) -> 1 + length bs

= \How do you write length with fold_right, but
no explicit recursion?

let length list =
List.fold_right (fun x -> funn-> n+ 1) list 0

9/17/14 18

i Map from Fold

let map f list =

fold_right (fun x -> funy -> f x :: y) list
[15

val map : ('a->"'b) -> 'alist -> 'b list =
<fun>

map ((+)1) [1;2;3];;

- rint list = [2; 3; 4]

= Can you write fold_right (or fold_left) with
just map? How, or why not?

9/17/14 19

i [terating over lists

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('la->'b->"a)->'a->'blist->"'a=
<fun>
fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit = ()

9/17/14

20

* Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list.1;;

val prod : int list=> int = <fun>

‘Init Acc Value ‘ ‘Recursive Call‘ ‘Operation ‘

let prod%
List.fold_left (fun accy -> acc * y) 1 list;;

val prod: int list -> int = <fun>
prod [4;5;6];;
- 1 int =120

9/17/14 21

+

Your turn now

Try Problem 3 on MP4

ﬁ Question

let length | =

let rec length_aux list n =

match list with [] -> n

| (@ :: bs) -> length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but
no explicit recursion?

9/17/14 23

ﬁ Question

let length | =

let rec length_aux list n =

match list with [] -> n

| (@ :: bs) -> length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but
no explicit recursion?

let length list =
List.fold_left (fun n-> fun x->n + 1) 0 list

9/17/14 24

ﬁ Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('fa->'b->"a)->"a->'blist->"'a =
<fun>
fold_left f a [Xy; Xo;...;%,] = f(...(f (f @ X{) X5)...)X,

let rec fold_right f list b = match list
with []->b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->"'b) -> "alist->'b->'b =
<fun>
‘fold_right f[Xy; Xo5..5%] b = x,(f X, (...(f X, b)...) ‘

9/17/14 25

ﬁ Recall

let rec poor_rev list = match list
with [] -> []
| (X::XS) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

=| What is its running time?

9/17/14 26

‘L Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (X::XS) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/17/14 27

ﬁ Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X i1 XS -> rev_aux xs (X::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [1;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/17/14

28

i Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @[3]) @[2]) @[1] =
= ([J@[3]) @[2]) @[1]) =

s (B]1@[2]) @[1] =

= S ([]@[2]) @[1] =
 [32]@[1] =

= 3 ([2] @[1]) =

s 302 (]@[1]) =13, 2, 1]

9/17/14

29

i Comparison

m eV [1,2 3] =

= Fev_aux
= Fev_aux
= Fev_aux
= Fev_aux

9/17/14

1,2,3][]=
2,3]1[1] =

3][2,1] =
103,211 =

[3,2,1]

30

ﬁ Folding - Tail Recursion

- # letrev list =
fold_left
(funl->funx->x::1) //comb op
[] //accumulator cell

list

9/17/14 31

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any tail
primitive recursive definition

9/17/14 32

i Continuations

= A programming technique for all forms
of “non-local” control flow:

= hon-local jumps
= exceptions

= general conversion of non-tail calls to tail
calls

= Essentially it’ s a higher-order function
version of GOTO

9/17/14 33

i Continuations

= Idea: Use functions to represent the control
flow of a program

= Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

= Function receiving the result called a
continuation

s Continuation acts as “accumulator” for work
still to be done

9/17/14 34

i Continuation Passing Style

= Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

9/17/14 35

i Continuation Passing Style

= A compilation technique to implement non-
local control flow, especially useful in
interpreters.

= A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

9/17/14 36

i Why CPS?

Makes order of evaluation explicitly clear

Allocates variables (to become registers) for each
step of computation

Essentially converts functional programs into
imperative ones

= Major step for compiling to assembly or byte
code

Tail recursion easily identified

Strict forward recursion converted to tail recursion
= At the expense of building large closures in heap

9/17/14 37

Example

= Simple reporting continuation: ‘

let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:‘

letaddkab k =k (a + b);;

val addk : int -> int -> (int-> "a) -> "a = <fun>
addk 22 20 report;;

2

- unit = ()

9/17/14

38

i Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

let subk xy k = k(x + vy);;

val timesk : int -> int -> (int -> "a) -> 'a = <fun>

#letegkxyk=k(x =vy);;

val egk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>

let timesk x y k = k(x * y);;

val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

9/17/14 39

+

Your turn now

Try Problem 5 on MP4
Try modk

i Nesting Continuations

letadd_threexyz=(X+Yy) + z;;
val add three : int -> int -> int -> int = <fun>
letadd_threexyz=letp=x+vyin p + z;;
val add _three : int -> int -> int -> int = <fun>
let add_three_kxyzk =
addk x y|(fun p -> addk p z[K);;
val add_three_k : int -> int -> int -> (int -> 'a)
-> 'a = <fun>

9/17/14 41

i add three: a different order

s # letadd_threexyz =x + (y + 2);;

= How do we write add three k to use a
different order?

s let add_three_ kxy zk =

9/18/14

42

+

Your turn now

Try Problem 6 on MP4

ﬁ Recursive Functions

'm Recall: |
let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-1 int = 120

9/17/14

44

ﬁ Recursive Functions

let rec factorial n =
let b = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
elselets = n—-1in (* Second computation *)
let r = factorial s in (* Third computation *)
n *rin (* Returned value *) ;;
val factorial : int -> int = <fun>
factorial 5;;
- int =120

9/17/14 45

* Recursive Functions

let rec factorialk n k =
egkn 0

(fun b -> (* First computation *)

if b then k 1 (* Passed value *)

else subk n 1 (* Second computation *)

(fun s -> factorialk s (* Third computation *)

(fun r -> timesk n r k))) (* Passed value *)
val factorialk : int -> int = <fun>

factorialk 5 report;;
120

- unit = ()

9/17/14

46

i Recursive Functions

= 10 make recursive call, must build
intermediate continuation to

= take recursive value: r
= build it to final result: n * r

=« And pass it to final continuation:

s timesnrk=k(n *r)

9/17/14

47

i Example: CPS for length

let rec length list = match list with [] -> 0
| (@ :: bs) -> 1 + length bs
What is the let-expanded version of this?

9/17/14

48

i Example: CPS for length

let rec length list = match list with [] -> 0
| (@ :: bs) -> 1 + length bs
What is the let-expanded version of this?
let rec length list = match list with [] -> 0
| (@::bs)->letrl =lengthbsin1 +rl

9/17/14 49

i Example: CPS for length

#let rec length list = match list with [] -> 0
| (@ ::bs)->letrl =lengthbsin1 +rl
What is the CSP version of this?

9/18/14

50

i Example: CPS for length

#let rec length list = match list with [] -> 0
| (@::bs)->letrl =lengthbsin1 +rl
What is the CSP version of this?
#let rec lengthk list k = match list with [] -> k 0
| X i xs -> lengthk xs (fun r -> addk r 1 k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
- 1 unit = ()

9/18/14 51

+

Your turn now

Try Problem 8 on MP4

i CPS for Higher Order Functions

= In CPS, every procedure / function takes a
continuation to receive its result

= Procedures passed as arguments take
continuations

s Procedures returned as results take
continuations

= CPS version of higher-order functions must
expect input procedures to take
continuations

9/18/14

53

i Example: all

#let rec all p | = match | with [] -> true
| (X ::xs)->letb = pxin
if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?

9/18/14

54

i Example: all

#let rec all p | = match | with [] -> true
| (X :: xS)->letb =pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k =

9/18/14

55

i Example: all

#let rec all p | = match | with [] -> true
| (X :: xS)->letb =pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match | with []-> true

9/18/14

56

i Example: all

#let rec all p | = match | with [] -> true
| (X :: xS)->letb =pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match | with [] -> k true

9/18/14

57

i Example: all

#let rec all p | = match | with [] -> true
| (X :: xs)->letb = pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?

#let rec allk pk | k = match | with [] -> Kk true
| (X :: xS) ->

9/18/14

58

i Example: all

#let rec all p | = match | with [] -> true
| (X :: xs)->letb = pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?

#let rec allk pk | k = match | with [] -> Kk true
| (X i XS) -> pk X

9/18/14

59

i Example: all

#let rec all p | = match | with [] -> true

| (X :: xs)->letb = pxin

if b then all p xs else false

val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match | with [] -> k true
| (X i XS) -> pk X

) (fun b -> if b then else

9/18/14 60

i Example: all

#let rec all p | = match | with [] -> true
| (X :: xs)->letb = pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match | with [] -> k true
| (X i XS) -> pk X
(fun b -> if b then allk pk xs k else k

false)

val allk : ("fa -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/18/14 61

i Terms

= A function is in Direct Style when it returns its
result back to the caller.

= A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

= A function is in Continuation Passing Style when it,

and every function call in it, passes its result to
another function.

= Instead of returning the result to the caller, we
pass it forward to another function.

9/17/14 62

i Terminology

= Tail Position: A subexpression s of
expressions e, such that if evaluated,
will be taken as the value of e
= if (x>3) then x + 2lelse|x - 4 |
= letx = 5in|x + 4

= Tail Call: A function call that occurs in
tail position
« if (h x) then|f X else[(x + g X)]

9/17/14 63

i Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda Iiftle_d).

n if t1enelse (x+g x)‘
- ift1en (fun x -> f x) else[(g (x + X))|
*

Not available

9/17/14 64

i CPS Transformation

= Step 1: Add continuation argument to any function
definition:

s letfarg=e = letfargk=e

= Idea: Every function takes an extra parameter
saying where the result goes

= Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:

» returna = k a
= Assuming a is a constant or variable.
= “Simple” = “No available function calls.”

9/17/14 65

i CPS Transformation

= Step 3: Pass the current continuation to every
function call in tail position

= return f arg = farg k

= The function “isn’ t going to return,” so we need
to tell it where to put the result.

9/17/14 66

i CPS Transformation

= Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)

« return op (f arg) = f arg (fun r -> k(op r))
= Op represents a primitive operation

« return f(g arg) = g arg (fun r-> f r k)

9/17/14 67

i Example

Before: After:
let rec add list Ist = let rec add_listk Ist k =
v (* rule 1 *)
match Ist with atch lst with
[1->0 | [1-> kO (*rule 2 *)
| 0 :: xs -> add_list xs | 0 :: xs -> add_listk xs k
| X 11 xS -> (+) X (* rule 3 *)
(add list XS)" | X :: Xs -> add_listk xs

(funr->k ((+)xn);
(* rule 4 *)

9/17/14 -

* CPS for sum

let rec sum list = match list with [] -> 0
| X 11 XS -> X + sum Xs ;;
val sum : int list -> int = <fun>

9/17/14

69

ﬁ CPS for sum

let rec sum list = match list with [] -> 0
| X 11 XS -> X + sum Xs ;;

val sum : int list -> int = <fun>

let rec sum list = match list with [] -> 0
| X ;i xs->letrl =sumxs inx +rl;;

9/17/14

70

i CPS for sum

let rec sum list = match list with [] -> 0
| X 11 XS -> X + sum Xs ;;
val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0
| X ;i xs->letrl =sumxs inx +rl;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0
| X 11 xs ->sumk xs (fun rl -> addk x r1 k);;

9/17/14 /1

i CPS for sum

let rec sum list = match list with [] -> 0
| X 11 XS -> X + sum Xs ;;
val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0
| X ;i xs->letrl =sumxs inx + rl;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0
| X 11 xs ->sumk xs (fun rl -> addk x r1 k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
sumk [2;4;6;8] report;;
20

- unit = ()

9/17/14

72

i Other Uses for Continuations

= CPS designed to preserve order of
evaluation

= Continuations used to express order of
evaluation

= Can be used to change order of evaluation

= Implements:

= Exceptions and exception handling
= Co-routines

= (pseudo, aka green) threads

9/17/14 73

i Exceptions - Example

Zero;;
exception Zero
let rec list_mult_aux list =

match list with [] -> 1

| X 11 XS ->

if x = 0 then Zero

else x * list_mult_aux xs;;

val list._ mult_aux : int list -> int = <fun>

9/17/14

74

i Exceptions - Example

let list._ mult list =

list_mult_aux list Zero
val list._mult : int list -> int = <fun>
list_ mult [3:4;2];;

-:int = 24
list_mult [7;4;01;;
-:int=0

list_mult_aux [7;4;0];;
Exception: Zero.

9/17/14

0;;

75

i Exceptions

= When an exception is raised
= The current computation is aborted

= Control is “thrown” back up the call
stack until a matching handler is
found

= All the intermediate calls waiting for a
return values are thrown away

9/17/14 76

i Implementing Exceptions

let multkp mn k =
letr =m * nin
(print_string "product result: ";
print_int r; print_string "\n";
Kr);;
val multkp : int -> int -> (int -> 'a) -> 'a
= <fun>

9/17/14 77

i Implementing Exceptions

let rec list_multk_aux list k kexcp =
match list with [] -> k 1

| X :: xs-> if x = 0then kexcp O
else list_multk_aux xs
(fun r -> multkp x r k) kexcp;;

val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)
-> 'a = <fun>

let rec list._multk list k = list._multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/17/14 78

i Implementing Exceptions

list_multk [3;4;2] report;;

oroduct result: 2
oroduct result: 8
oroduct result: 24
24

- unit = ()

list_multk [7;4;0] report;;
0
- 1 unit = ()

9/17/14

79

