Programming Languages and
Compilers (CS 421)

»

~
Elsa L Gunter
2112 SC, UluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/17/14

i Mapping Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fFh) :: (map ft);;
valmap : (‘fa->'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-:intlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
pintlist =[12; 7; 4; 2; 1; 0; 0]

9/17/14 2

i Mapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with[]1->1[1]
| X::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- 1int list = [4; 6; 8]

9/17/14

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion
let doublelList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- :int list = [4; 6; 8]

= Same function, but no explicit rec

9/17/14 4

+

Your turn now

Try Problem 1 on MP4

9/17/14

* Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

9/17/14 6

Folding Functions over Lists

How are the following functions similar? |
let rec sumList list = match list with
[1->0] x::xs -> x + sumlList xs;;

val sumList : int list -> int = <fun>

sumlList [2;3;4];;

-:int=9

let rec multList list = match list with
[1-> 1] x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multList [2;3;4];;

-:int=24

9/17/14 7

Folding Functions over Lists

How are the following functions similar? |
let rec sumList list = match list with
[1->|0]] x::xs -> x + sumList xs;;

val sumList Tintlist -> int = <fun>
P

let rec multkistTist = match list with
[1->|1]] x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multlist [2;3;4];;

-:int=24

9/17/14 8

Folding Functions over Lists

How are the following functions similar? |
let rec sumlList list = match list with
[1->[0]| x::xs -> x +[sumList xs
val sumList : int list -> int = <fun>
sumlList [2;3;4];;
-:int=9
let rec multList list = match list
[1->[L]| x::xs -> x * [multList xs
val multList : int list -> int = <fun>
multList [2;3;4];;
-1int=24

Recursive Call

th

9/17/14 9

Folding Functions over Lists

How are the following functions similar? |
let rec sumList list = match list with
[1->[0]] x::xs ->[x|+[sumList xs};
val sumlList : int list -> int= n>
sumlList [2;3;4];;
-:1int=9
let rec multList list = match list with
[1->[I]] x::xs ->[X * [multCist xs};
val multList : int list -> int = <fun>
multList [2;3;4];;
-:int=24

9/17/14 10

i Folding Functions over Lists

| How are the following functions similar? |
let rec sumList list = match list with

[1->[0]] x::xs ->[x]+[sumList xs};

val sumList : int list ->"int=_<fun>
#S‘Il:]TE'Sg [2;3;4];; |Combing Operation|

let rec multList list = match list with
[1->[1]] x::xs ->[* [multList xs};

val multList : int list -> int = <fun>

multlist [2;3;4];;

-:int=24

9/17/14 11

i Folding Functions over Lists

| How are the following functions similar? |

let rec sumlList list = match list with
[1->[0]1 x::xs -51[x]+ RN,

val sumlList : int list ->"int=_<fun>

sumlList [2;3;4];;

-:int=9

let rec multList list = match list with
11 ->(T]) oes -5~ N,

val multList : int list -> int = <fun>

multList [2;3;4];;

-:int = 24R

|Combing Operation|

9/17/14 12

Recursing over lists

let rec fold_right f list b =
match list
with []-> b
| (x:: xs) -> f x (fold_right f xs b);; Recursion Fairy
val fold_right : ('a->'b->'b)->'alist->'b->'b =
<fun>
fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
0
therehi- : unit = ()

9/17/14 13

i Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun rv -> x * rv)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

9/17/14 14

i Encoding Recursion with Fold

let rec append listl list2 = match list1 with
[]-> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

| Base Case | |Operation || Recursive Call |

let append list1 list
fold_right (fun x rv'-> x :: 1v) listl list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
-rintlist = [1; 2; 3; 4; 5; 6]

9/17/14 15

+

Your turn now

Try Problem 2 on MP4

9/17/14 16

i Question

let rec length | =
match [with []-> 0
| (a::bs)->1+ length bs

= |How do you write length with fold_right, but
no explicit recursion?

9/17/14 17

* Question

let rec length | =
match [with []-> 0
| (@::bs)->1+ length bs

= |How do you write length with fold_right, but
no explicit recursion?

let length list =
List.fold_right (fun x -> funn-> n+ 1) list 0

9/17/14 18

iMap from Fold

let map f list =

fold_right (fun x -> funy -> f x :: y) list
[1

val map : ("fa->'b) -> 'alist -> 'b list =
<fun>

map ((+)1) [1;2;3];;

-intlist = [2; 3; 4]

= Can you write fold_right (or fold_left) with
just map? How, or why not?

9/17/14

Iterating over lists

let rec fold_left f a list =
match list
with []-> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->'a=
<fun>

fold_left
(fun () -> print_string)

;
[llhill; lltherell];;
hithere- : unit = ()

9/17/14 20

i Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list-1;;

val prod : int Jist=> int = <fun>

IInit Acc Value | IRecursive Call | IOperation |

let prodm
List.fold_left (fun accy -> acc * y)'1 list;;

val prod: int list -> int = <fun>
prod [4;5;6];;
-:1int =120

9/17/14 21

+

Your turn now

Try Problem 3 on MP4

9/17/14 22

i Question

let length | =

let rec length_aux list n =

match list with []1-> n

| (@:: bs) -> length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but
no explicit recursion?

9/17/14 23

i Question

let length | =

let rec length_aux list n =

match list with [] -> n

| (a@::bs)->length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but
no explicit recursion?

let length list =
List.fold_left (fun n -> fun x -> n + 1) 0 list

9/17/14 24

i Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a->'b->'a)->'a->'blist->'a =
<fun>
fold_left f a [Xq; Xy;...;%,] = f(...(f (f @ Xy) X5)...)X,

let rec fold_right f list b = match list
with []1-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ("a->'b->'b)->'alist->'b->'b =
<fun>
|fold_right f [Xq; Xo;..;%,] b = £ x,(F %, (...(F x, b)...)) |

9/17/14 25

i Recall

let rec poor_rev list = match list
with []-> []
| (X::xs) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

What is its running time?

9/17/14 26

$ Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/17/14 27

i Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X i1 xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/17/14 28

i Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @[3]) @ [2]) @ [1] =
« ([1@[B]) @[2]) @[1]) =

= (31@2) @[1] =

s Bu([l@e2))@[1] =

= [3,2]@[1] =

=3 (R1@[1]) =

s 30 (l1@[1]) =103, 2, 1]

9/17/14 29

* Comparison

= [eV [1,2,3] =

mrev_aux [1,2,3][]1=

= rev_aux [2,3] [1] =

= rev_aux [3][2,1] =

= rev_aux [][3,2,1] = [3,2,1]

9/17/14 30

i Folding - Tail Recursion

- # letrev list =
fold_left
(funl->funx->x:1) //comb op
[] //accumulator cell
list

9/17/14 31

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

9/17/14 32

‘ Continuations

= A programming technique for all forms
of “non-local” control flow:
= hon-local jumps
= exceptions
= general conversion of non-tail calls to tail

calls

= Essentially it’ s a higher-order function

version of GOTO

9/17/14 33

‘ Continuations

= Idea: Use functions to represent the control
flow of a program

= Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

= Function receiving the result called a
continuation

= Continuation acts as “accumulator” for work
still to be done

9/17/14 34

’ Continuation Passing Style

= Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

9/17/14 35

‘ Continuation Passing Style

= A compilation technique to implement non-
local control flow, especially useful in
interpreters.

= A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

9/17/14 36

i Why CPS?

= Makes order of evaluation explicitly clear

= Allocates variables (to become registers) for each
step of computation

= Essentially converts functional programs into
imperative ones

= Major step for compiling to assembly or byte
code

= Tail recursion easily identified

= Strict forward recursion converted to tail recursion
= At the expense of building large closures in heap

9/17/14 37

Example

= Simple reporting continuation: |

let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:|

letaddk a b k = k (a + b);;

val addk : int -> int -> (int -> "a) -> "a = <fun>
addk 22 20 report;;

2

-:runit=()

9/17/14 38

‘ Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

let subk x y k = k(x + y);;

val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

#letegkxy k = k(x =vy);;

val egk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>

let timesk x y k = k(x * y);;

val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

9/17/14 39

*

Your turn now

Try Problem 5 on MP4
Try modk

9/17/14 40

’ Nesting Continuations

letadd_threexyz = (X +y) + z;;
val add_three : int -> int -> int -> int = <fun>
letadd_threexyz=letp=x+yin p+z;
val add_three : int -> int -> int -> int = <fun>
let add_three_k xy z k =
addk x y|(fun p -> addk p z[K]);;
val add_three_k : int -> int -> int -> (int -> 'a)
->'a = <fun>

9/17/14 41

‘ add_three: a different order

= # letadd_threexy z = x + (y + 2);;

= How do we write add_three_k to use a
different order?

» let add_three_kxyzk =

9/18/14 42

+

Your turn now

Try Problem 6 on MP4

9/17/14 43

Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120

-

9/17/14 44

i Recursive Functions

let rec factorial n =
let b = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
else lets = n—1in (* Second computation *)
let r = factorial s in (* Third computation *)
n * rin (* Returned value *) ;;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120

9/17/14 45

i Recursive Functions

let rec factorialk n k =
egkn 0
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk n 1 (* Second computation *)
(fun's -> factorialk s (* Third computation *)
(fun r -> timesk n r k))) (* Passed value *)
val factorialk : int -> int = <fun>
factorialk 5 report;;
120
-:runit=()

9/17/14 46

i Recursive Functions

= To make recursive call, must build
intermediate continuation to

= take recursive value: r

= build it to final result: n * r

= And pass it to final continuation:
» timesnrk=k(n*r)

9/17/14 47

i Example: CPS for length

let rec length list = match list with []-> 0
| (@::bs)->1+ length bs
What is the let-expanded version of this?

9/17/14 48

i Example: CPS for length

let rec length list = match list with [] -> 0

| (a::bs)-> 1+ length bs
What is the let-expanded version of this?
let rec length list = match list with []-> 0

| (@::bs)->letrl =lengthbsinl +rl

9/17/14 49

i Example: CPS for length

#let rec length list = match list with []-> 0
| (@::bs)->letrl =lengthbsin1+rl
What is the CSP version of this?

9/18/14 50

$ Example: CPS for length

#let rec length list = match list with []-> 0
| (@::bs)->letrl =lengthbsin1 +rl
What is the CSP version of this?
#let rec lengthk list k = match list with []-> k 0
| x :: xs -> lengthk xs (fun r -> addk r 1 k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
-:unit=()

9/18/14 51

+

Your turn now

Try Problem 8 on MP4

9/17/14 52

i CPS for Higher Order Functions

= In CPS, every procedure / function takes a
continuation to receive its result

= Procedures passed as arguments take
continuations

= Procedures returned as results take
continuations

= CPS version of higher-order functions must
expect input procedures to take
continuations

9/18/14 53

i Example: all

#let rec all p | = match | with [] -> true
| (x::xs)->letb=pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?

9/18/14 54

i Example: all

#let rec all p | = match | with [] -> true
| (X::xs)->letb =pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk 1 k =

9/18/14 55

iExample: all

#let rec all p | = match | with [] -> true
| (x::xs)->letb =pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match [with [] -> true

9/18/14 56

i Example: all

#let rec all p | = match | with [] -> true
| (x::xs)->letb=pxin
if b then all p xs else false
val all : ("'a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match [with [] -> k true

9/18/14 57

i Example: all

#let rec all p | = match | with [] -> true
| (x::xs)->letb=pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match | with []-> k true
| (X ::xs)->

9/18/14 58

Example: all

#let rec all p | = match | with [] -> true
| (x::xs)->letb=pxin
if b then all p xs else false
val all : ("'a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match | with [] -> k true
| (x ::xs) -> pk x

9/18/14 59

Example: all

#let rec all p | = match | with [] -> true
| (x::xs)->letb=pxin
if b then all p xs else false

val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?

#let rec allk pk | k = match | with [T -> k true
| (x ::xs) -> pk x

(fun b -> if b then else

9/18/14 60

i Example: all

#let rec all p | = match | with [] -> true
| (x::xs)->letb=pxin
if b then all p xs else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk pk | k = match [with [] -> k true
| (x::xs)->pkx
(fun b -> if b then allk pk xs k else k

false)
val allk : (‘a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/18/14 61

i Terms

= A function is in Direct Style when it returns its
result back to the caller.

= A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

= A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

= Instead of returning the result to the caller, we
pass it forward to another function.

9/17/14 62

‘ Terminology

= Tail Position: A subexpression s of
expressions e, such that if evaluated,
will be taken as the value of e
= if (x>3) ther| x + 2|else|x - 4 |
=letx =5in

= Tail Call: A function call that occurs in
tail position

= if (h x) then[f X|else[(x + g X)]

9/17/14 63

‘ Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous

function, lambda lifted).

u if thenelse

. if then (fun x -> f x) else|(g (x + x))
1)

Not available

9/17/14 64

’ CPS Transformation

= Step 1: Add continuation argument to any function
definition:
sletfarg=e =letfargk =e

= Idea: Every function takes an extra parameter
saying where the result goes

= Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:

= retumma=ka
= Assuming a is a constant or variable.
= “Simple” = “No available function calls.”

9/17/14 65

‘ CPS Transformation

= Step 3: Pass the current continuation to every
function call in tail position

= return farg = farg k

= The function “isn’ t going to return,” so we need
to tell it where to put the result.

9/17/14 66

i CPS Transformation

= Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)

= return op (f arg) = f arg (fun r -> k(op r))
= Op represents a primitive operation

= return f(g arg) = g arg (fun r-> f r k)

9/17/14 67

i Example

Before: After:
. _ letrecadd_listk Istk =
let rec add_lllst Ist = (* rule 1 %)
match Ist with match Ist with
[1->0 [[1->kO0(*rule2*)

| 0:: xs -> add_list xs | 0 :: xs -> add_listk xs k

.) (* rule 3 *)
X lé:l():l(sl' > (+)__X | x :: xs -> add_listk xs
(add_list xs);; (funr->k ((+)x1);;
(* rule 4 *)

9/17/14 68

i CPS for sum

let rec sum list = match list with []-> 0
| X1 Xs->Xx+ sumxs ;;
val sum : int list -> int = <fun>

9/17/14 69

i CPS for sum

let rec sum list = match list with []1-> 0
| X1 XS ->X+sumxs ;;

val sum : int list -> int = <fun>

let rec sum list = match list with []-> 0
| x::xs->letrl =sumxs inx +rl;;

9/17/14 70

i CPS for sum

let rec sum list = match list with []-> 0
| X i1 xs-> X+ sum xs ;;
val sum : int list -> int = <fun>
let rec sum list = match list with []-> 0
| x::xs->letrl =sumxs inx +rl;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with []-> k 0
| x ::xs ->sumk xs (fun rl -> addk x r1 k);;

9/17/14 71

i CPS for sum

let rec sum list = match list with []-> 0
| X 11 Xs-> X+ sum xs ;;
val sum : int list -> int = <fun>
let rec sum list = match list with []-> 0
| x::xs->letrl =sumxs inx +rl;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0
| x :: xs -> sumk xs (fun rl -> addk x r1 k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
sumk [2;4;6;8] report;;
20
-runit=()

9/17/14 72

i Other Uses for Continuations

= CPS designed to preserve order of
evaluation

= Continuations used to express order of
evaluation
= Can be used to change order of evaluation
= Implements:
= Exceptions and exception handling
= Co-routines
= (pseudo, aka green) threads

9/17/14 73

i Exceptions - Example

Zero;;
exception Zero
let rec list_mult_aux list =

match listwith []-> 1

| X i xs ->

if x = 0 then Zero

else x * list_mult_aux xs;;

val list_mult_aux : int list -> int = <fun>

9/17/14 74

‘ Exceptions - Example

let list_mult list =

list_mult_aux list Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;

-:int=24
list_mult [7;4;0];;
-:int=0

list_mult_aux [7;4;0];;
Exception: Zero.

9/17/14 75

‘ Exceptions

= When an exception is raised
= The current computation is aborted

= Control is “thrown” back up the call
stack until a matching handler is
found

= All the intermediate calls waiting for a
return values are thrown away

9/17/14 76

’ Implementing Exceptions

let multkp mn k =
letr=m*nin
(print_string "product result: ";
print_int r; print_string "\n";
kr);;
val multkp : int -> int -> (int -> 'a) -> 'a
= <fun>

9/17/14 77

‘ Implementing Exceptions

let rec list_multk_aux list k kexcp =

match listwith [T-> k 1

| x ::xs -> if x = 0 then kexcp 0

else list_multk_aux xs
(fun r -> multkp x r k) kexcp;;

val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/17/14 78

i Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2

product result: 8

product result: 24

24

- unit = ()

list_multk [7;4;0] report;;
0

- unit = ()

9/17/14 79

