Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/11/14

i Evaluating declarations

= Evaluation uses an environment p

= T0 evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Then update p with x v: {X —= v} + p

9/11/14

i Evaluating expressions

= Evaluation uses an environment p
= A constant evaluates to itself
= T0 evaluate an variable, look it up in p (p(Vv))

= TO evaluate uses of +, _, etc, eval args,
then do operation

= Function expression evaluates to its closure

= 1O evaluate a local dec: let x = el in e2
= Eval el to v, then eval e2 using {x — v} + p

9/11/14 3

i Eval of App with Closures in OCaml

1. Evaluate the right term to values, (v4,...,v,,)

2. In environment p, evaluate left term to
closure, ¢ = <(Xy,...,X,) = b, p>

3. Match (x,...,x.) variables in (first) argument
with values (vy,...,v,)

2. Update the environment p to
0 =A{X{ = Vi, Xo =V 3+ P

s. Evaluate body b in environment p’

9/11/14 4

i OCaml Example 1

(print_string "a";
(fun x -> (prlnt string "b";
(funy -> (print_string "c

X +Y))))

(print_string "d"; 3)
(print_string "e"; 5);;

9/11/14

i OCaml Example 1

(print_string "a";
(fun x -> (prlnt string "b";
(funy -> (print_string "c

X +Y))))

(print_string "d"; 3)
(print_string "e"; 5);;

edabc- : int = 8
#

9/11/14

+

Your turn now

Try Problem 1 on HW3

+

let f = (print_string "a
(fun x -> (prmt string "b";
(funy -> (print_string "c
X +Y)))))in
et u = (print_string "d"; 3) in
etg=fuin
et v = (print_string "e"; 5) in g v;;

9/11/14 8

+

let f = (print_string "a
(fun x -> (prmt string "b";
(funy -> (print_string "c
X +Y)))))in

et u = (print_string "d"; 3) in
etg=fuin
et v = (print_string "e"; 5) in g v;;
adbec- : int = 8

9/11/14 9

i Higher Order Functions

= A function is higher-order if it takes a
function as an argument or returns one as
a result

= Example:

let compose f g = fun x -> f (g X);;
val compose : ('a->'b) -> ('c->"a) -> 'c ->
'b = <fun>

= Thetype ('a->'b)-> (‘c->"a)->'c->'b
IS a higher order type because of
(‘la->'b)and (‘c->"'a)and ->'c->"b

9/11/14 10

iThrice

' Recall: |
let thrice f x = f (f (f X));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
| = How do you write thrice with compose? |

9/11/14

11

i Thrice

' Recall: |
let thrice f x = f (f (f X));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
| = How do you write thrice with compose? |
let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
= Is this the only way?

9/11/14 12

i Partial Application

(+);

- 1int -> int -> int = <fun>

#(+)23;;

-:int=5

let plus_two = (+) 2;;

val plus_two : int -> int = <fun>

plus_two 7;;

-:int=9

= Patial application also called sectioning

9/11/14 13

i Lambda Lifting

= YOU must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add _two : int -> int = <fun>
#letadd2 = (* lambda lifted *)

fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

9/11/14 14

i Lambda Lifting

thrice add_two 5;;

- int =11

thrice add2 5;;
test

test

test

- int =11

= Lambda lifting delayed the evaluation of the
argument to (+) until the second argument

was supplied

9/11/14 15

i Partial Application and “Unknown Types”

| = Recall compose plus_two: |
let f1 = compose plus_two;;
val f1 : (_a->int) -> ' a-> int = <fun>

| = Compare to lambda lifted version: |
let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>

| = What is the difference? |

9/11/14 16

Partial Application and “Unknown Types”

= _a can only be instantiated once for an expression‘
f1 plus_two;;
- int -> int = <fun>
f1 List.length;;
Characters 3-14:
f1 List.length;;

NANANANNANNANNANNN

This expression has type 'a list -> int but is here used
with type int -> int

9/11/14 17

iPartiaI Application and “Unknown Types”

‘- ‘a can be repeatedly instantiated ‘

f2 plus_two;;

-1 int -> int = <fun>

f2 List.length;;

-: " alist -> int = <fun>

9/11/14 18

+

Your turn now

Try Problem 2 on HW3

i Lists

= First example of a recursive datatype (aka
algebraic datatype)

= Unlike tuples, lists are homogeneous in
type (all elements same type)

9/11/14 20

i Lists

s List can take one of two forms:
= Empty list, written []

= Non-empty list, written X :: xs

= X iS head element, xs is tail list, :: called
“Cons”

= Syntactic sugar: [Xx] == x :: []
s [X1; x2; .;xn]==x1:x2: .. xni[]

9/11/14

21

i Lists

let fib5 = [8;5;3;2;1;1]:;

val fib5 :intlist = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1:[1) = fib5;;

- : bool = true

fib5 @ fib6;;

- i]nt ist=1[8;5;3;2;1;1;13;8;5; 3; 2; 1;
1

9/11/14 22

i Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NAANN

This expression has type float but is here
used with type int

9/11/14

23

i Question

= Which one of these lists is invalid?

2; 3; 4, 6]

2,3; 4,5, 6,7]

(2.3,4); (3.2,5), (6,7.2)]

[*hi”; “there”]; ["wahcha™]; [1; ["doin™]]

ol S

9/11/14 24

i Answer

= Which one of these lists is invalid?

2; 3; 4, 6]

2,3; 4,5, 6,7]

(2.3,4); (3.2,5), (6,7.2)]

[*hi”; “there”]; ["wahcha™]; [1; ["doin™]]

ol S

= 3 s invalid because of last pair

9/11/14 25

i Functions Over Lists

let rec double_up list =
match list
with [] ->[] (* pattern before ->,
expression after *)
| (X ::xs)-> (X ::X::double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;

val fib5_ 2 :intlist =1[8; 8; 5;5; 3; 3; 2; 2; 1;
1; 1: 1]

9/11/14 26

i Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with [] -> []

| (X::XS) -> poor_rev xs @ [X];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- 1 string list = ["there"; "there"; "hi"; "hi"]

9/11/14 27

iQuestion: Length of list

= Problem: write code for the length of the list
= How to start?

let length | =

9/11/14 28

iQuestion: Length of list

= Problem: write code for the length of the list
= How to start?

let rec length | =
match | with

9/11/14 29

i Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with

9/11/14 30

i Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with [] ->
| (@ :: bs) ->

9/11/14 31

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is empty?

let rec length | =
match | with [] ->
| (@ :: bs) ->

9/11/14 32

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is empty?

let rec length | =
match | with [] -> 0
| (@ :: bs) ->

9/11/14 33

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?

let rec length | =
match | with [] -> 0
| (@ :: bs) ->

9/11/14 34

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?

let rec length | =
match | with [] -> 0
| (@ :: bs) -> 1 + length bs

9/11/14 35

+

Your turn now

Try Problem 1 on MP3

i Same Length

= How can we efficiently answer if two lists
have the same length?

9/11/14

37

i Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (X::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/11/14 38

i Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/11/14 39

iStructuraI Recursion : List Example

let rec length list = match list
with []-> 0 (* Nil case *)
| x :: Xxs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

-:int=4

= Nil case [] is base case

= Cons case recurses on component list xs

9/11/14 40

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

s Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

9/11/14 41

i Forward Recursion: Examples

let rec double_up list =
match list
with[]->1]
| (X ::XS)-> (X :: X ::double_up xs);;
val double_up : 'a list -> "a list = <fun>

let rec poor_rev list =
match list
with [] -> []
| (X::XS) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/14

42

i Forward Recursion: Example

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh) :: (map f t);;
val map : (fa -> 'b) -> "a list -> 'b list = <fun>
map plus_two fib5;;
- rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
cint list =[12; 7; 4; 2; 1; 0; 0]

9/11/14 43

i Question

= How do you write length with forward
recursion?

let rec length | =

9/11/14

44

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] ->
| (@ :: bs) ->

9/11/14

45

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] ->
| (@ :: bs) -> length bs

9/11/14

46

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] -> 0
| (3 :: bs) -> 1 + length bs

9/11/14

47

+

Your turn now

Try Problem 8 on MP3

i An Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know
to where to return when the
L call is finished

g = What if fcalls gand g calls A,

r but calling A is the last thing g
does (a tail call)?

9/11/14 49

i An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know
to where to return when the
& L call is finished

f = What if fcalls gand g calls A,

but calling A is the last thing g
does (a tail call)?

= Then h can return directly to 7
instead of g

9/11/14 50

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results

= May require an auxiliary function

9/11/14 51

i Example of Tail Recursion

let rec prod | =
match | with [] -> 1
| (X :: rem) -> x * prod rem;;
val prod : int list -> int = <fun>
let prod list =
let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
in prod_aux list 1;;
val prod : int list -> int = <fun>

9/11/14

52

i Question

= How do you write length with tail recursion?
let length | =

9/11/14 53

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =

N

9/11/14 54

i Question

= How do you write length with tail recursion?
let length | =

let rec length_aux list n =

match list with [] ->

| (@ :: bs) ->
N

9/11/14 55

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (@ :: bs) ->

N

9/11/14 56

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (@ :: bs) -> length_aux

N

9/11/14 57

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (3 :: bs) -> length_aux bs

N

9/11/14 58

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (@ :: bs) -> length_aux bs (n + 1)

N

9/11/14 59

i Question

= How do you write length with tail recursion?
let length | =

let rec length_aux list n =

match list with [] -> n

| (@ :: bs) -> length_aux bs (n + 1)
in length_aux | 0

9/11/14 60

+

Your turn now

Try Problem 10 on MP3

i Mapping Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh) :: (map f t);;
val map : (fa -> 'b) -> "a list -> 'b list = <fun>
map plus_two fib5;;
- rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
cint list =[12; 7; 4; 2; 1; 0; 0]

9/11/14 62

i Mapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with[]->1[1]
| X::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3:4]1;;
- int list = [4; 6; 8]

9/11/14 63

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doubleList [2:3;4];;
- 1 int list = [4; 6; 8]
= Same function, but no rec

9/11/14 64

i Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with|[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4:6];;
- . int = 48
= Computes (2* (4 * (6 *1)))

9/11/14 65

i Folding Functions over Lists

| How are the following functions similar?

let rec sumlist list = match list with
[1-> 0| x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3:4];;

-:int=9

let rec prodlist list = match list with
[1-> 1| x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

-1 int = 24

9/11/14

66

i [terating over lists

let rec fold_right f list b =
match list
with []-> b
| (X :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b) ->"alist->'b->'b =
<fun>
fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
0:
therehi- : unit = ()

9/11/14 67

i Folding Recursion

= multList folds to the right
= Same as:
let multList list =
List.fold_right
(fun X -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4:6];;
- 1 int = 48

9/11/14 68

i Encoding Recursion with Fold

let rec append listl list2 = match listl with
[]-> list2 | x::xs -> x :: append xs list2;;
val apa@nd : 'a list -> |a list —>§\§ list = <fun>

| Base Case | |Operation || Recursive Call |

let append listl list2 =
fold_right (fun x y -> x ::y) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4,5;6];;
-intlist = [1; 2; 3; 4; 5; 6]

9/11/14 69

i Question

let rec length | =
match | with [] -> 0
| (3 :: bs) -> 1 + length bs

= \How do you write length with fold_right, but
no explicit recursion?

9/11/14 70

i Question

let rec length | =
match | with [] -> 0
| (3 :: bs) -> 1 + length bs

= \How do you write length with fold_right, but
no explicit recursion?

let length list =
List.fold_right (fun x -> funn-> n+ 1) list 0

9/11/14 71

i Map from Fold

let map f list =

fold_right (fun x -> funy -> f x :: y) list
[15

val map : ('fa->'b) -> 'alist-> 'b list =
<fun>

map ((+)1) [1;2;3];;

- intlist = [2; 3; 4]

= Can you write fold_right (or fold_left) with
just map? How, or why not?

9/11/14 72

i [terating over lists

let rec fold_left f a list =
match list

with [] -> a
| (X :: xs) -> fold_left f (f a xX) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->'a =
<fun>
fold_left
(fun () -> print_string)
()
["hi": "there"];;
hithere- : unit = ()

9/11/14

73

iEncoding Tail Recursion with fold_left

let prod list = let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list-1;;

val prod : int list-> int = <fun>

‘Init Acc Value ‘ ‘Recursive Call ‘ ‘Operation ‘

let prod%
List.fold_left (fun acc y -> acc * y)1 list;;

val prod: int list -> int = <fun>
prod [4;5;6];;
- . int =120

9/11/14 74

i Question

let length | =

let rec length_aux list n =

match list with [] -> n

| (@ :: bs) -> length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but
no explicit recursion?

9/11/14 75

i Question

let length | =

let rec length_aux list n =

match list with [] -> n

| (@ :: bs) -> length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but
no explicit recursion?

let length list =
List.fold_left (fun n -> fun x->n + 1) 0 list

9/11/14 76

i Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->"'a->'blist->'a =
<fun>
fold_left f a [Xy; X5;...;%,] = f(...(f (f @ X{) X5)...)X,

let rec fold_right f list b = match list
with []-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->"'b) ->"alist->'b->'b =
<fun>
‘fold_right f[Xy; X55..0%,] b = £ x,(F %, (...(f X, b)...)) ‘

9/11/14 77

i Recall

let rec poor_rev list = match list
with [] -> []
| (X::Xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

=| What is its running time?

9/11/14 78

i Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (X::Xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/14 79

iTaiI Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X 11 XS -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/11/14

80

i Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @[3]) @[2]) @[1] =
s ([J@[3]) @[2]) @[1]) =

s (B]l@[2]) @[1] =

= S ([]@[2]) @[1] =

= [32]@[1] =

= 3 ([2]@[1)) =

s 320 ([1@[1)) =13, 2, 1]

9/11/14

81

i Comparison

m [EV [1,2 3] =

= Fev_aux
= Fev_aux
= Fev_aux
= Fev_aux

9/11/14

1,2,3][]=
2,3]1[1] =

3][2,1] =
1103,21] =

[3,2/1]

82

iFolding - Tail Recursion

- # letrev list =
fold left
(funl->funx->x::1) //comb op
[] //accumulator cell

list

9/11/14 83

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any tail
primitive recursive definition

9/11/14 84

