Programming Languages and
Compilers (CS 421)

L

Elsa L Gunter El
2112 SC, UluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/28/14

‘ Contact Information - Elsa L Gunter

= Office: 2112 SC

= Office hours:
= Tuesdays 12:30pm — 1:45pm
= Thursdays 3:30pm — 4:45pm
= Fridays 10:00am — 11:00am
= Also by appointment

= Email: egunter@illinois.edu

8/28/14

* Course TAs

Susannah Johnson Edgar Pek

Yet To Be Determined

8/28/14

* Contact Information - TAs

= Teaching Assistants Office: 0207 SC
= Susannah Johnson

= Email: sjohnsn2@illinois.edu
= Hours: Mon 2:00pm — 3:45pm
= Edgar Pek
= Email: pekl@illinois.edu
= Hours: Wed 10:00am — 11:45am

= Yet To Be Determined

8/28/14

Course Website

= http://courses.engr.illinois.edu/cs421
= Main page - summary of news items
= Policy - rules governing course

= Lectures - syllabus and slides

= MPs - information about homework
= Exams

= Unit Projects - for 4 credit students
= Resources - tools and helpful info

= FAQ

8/28/14

‘ Some Course References

= No required textbook
= Some suggested references

modern
: compiler
implementatian
in ML

h b
ESSENTIALS

OF PROGRAMMING *
. LANGUAGES

8/28/14

’ Some Course References

= No required textbook.

= Put in pictures of the books

= Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

= Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Uliman. Published by Addison-Wesley. ISBN:
0-201-10088-6.

= Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

= Additional ones for Ocaml given separately

8/28/14 7

iCourse Grading

= Homework 10%

= About 12 MPs (in Ocaml) and 12 written assignments

= Submitted by svn

= MPs — plain text code that compiles; HWs — pdf

= Late submission penalty: 20% of assignments total value
= 2 Midterms - 25% each

= In class — Oct 7, Nov 11

= DO NOT MISS EXAM DATES!
= Final 40% - Dec 12, 1:30pm — 4:30pm
= Percentages are approximate

8/28/14 8

i Course Homework — Handwritten & MP

= You may discuss assignments and their solutions
with others

= You may work in groups, but you must list
members with whom you worked if you share
solutions or solution outlines

= Each student must write up and turn in their
own solution separately

= You may look at examples from class and other
similar examples from any source — cite
appropriately
= Note: University policy on plagiarism still holds - cite your

sources if you are not the sole author of your solution

8/28/14 9

i Programming Languages & Compilers

Three Main Topics of the Course

New
Programming
Paradigm

Language
Translation

Language
Semantics

8/28/14 10

iProgramming Languages & Compilers

__ Specification to Implementation

8/28/14 11

iProgramming Languages & Compilers

| : New Programming Paradigm

Functional

Programming and Recursion Passing
Closures Style

8/28/14 12

iProgramming Languages & Compilers

Order of Evaluation
N\ N\ VRN e

Closures ||

,,,/ / \1\ //"' \ / \\ yZ
Specification to Implementation)

8/28/14 13

iProgramming Languages & Compilers

Il : Language Translation

Lexing and Interpretation

Parsing

8/28/14 14

* Programming Languages & Compilers

_ Specification to Implementation

8/28/14 15

* Programming Languages & Compilers

Il : Language Semantics

Axiomatic
Semantics

Lambda
Calculus

Operational

Semantics

8/28/14 16

iProgramming Languages & Compilers

Order of Evaluation

/ \ y \

: tional\ |\ Lambda

- ’/CS426\\
\\\ CS422 //J \\ CS477 /‘

y

/

S/pecificationrio 7I7'mplementatikon —

8/28/14 17

iCourse Objectives

= New programming paradigm
= Functional programming
= Environments and Closures
= Patterns of Recursion
= Continuation Passing Style
= Phases of an interpreter / compiler
= Lexing and parsing
= Type systems
= Interpretation
= Programming Language Semantics
= Lambda Calculus

= Operational Semantics
= Axiomatic Semantics

8/28/14 18

iOCAML

= Locally:
= Compiler is on the EWS-linux systems at
Jusr/local/bin/ocaml
= Globally:
= Main CAML home:
http://caml.inria.fr/index.en.html

= To install OCAML on your computer see:
http://caml.inria.fr/ocaml/release.en.html

8/28/14 19

‘ References for OCaml

= Supplemental texts (not required):

= The Objective Caml system release 4.0, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’ Reilly
= Available online from course resources

8/28/14 20

i OCAML Background

= CAML is European descendant of original ML
= American/British version is SML
= O is for object-oriented extension

= ML stands for Meta-Language

= ML family designed for implementing
theorem provers

= It was the meta-language for programming the
“object” language of the theorem prover

= Despite obscure original application area, OCAML
is a full general-purpose programming language

8/28/14 21

i Features of OCAML

= Higher order applicative language
= Call-by-value parameter passing
= Modern syntax
= Parametric polymorphism

= Aka structural polymorphism
= Automatic garbage collection
= User-defined algebraic data types

= It’s fast - winners of the 1999 and 2000 ICFP
Programming Contests used OCAML

8/28/14 22

iWhy learn OCAML?

= Many features not clearly in languages you have
already learned

= Assumed basis for much research in programming
language research

= OCAML is particularly efficient for programming
tasks involving languages (eg parsing, compilers,
user interfaces)

= Used at Microsoft for writing SLAM and other a
formal methods tool for C programs
« Microsoft variant: F#

8/28/14 23

iOCaml Intro Code

= A (possibly better, non-PowerPoint) text
version of this lecture can be found at
http://course.engr.illinois.edu/class/cs421/
lectures/ocaml-intro-shell.txt

= For the OCAML code for today’ s lecture
see

http://course.engr.illinois.edu/class/cs421/
lectures/ocaml-intro.ml

8/28/14 24

iSession in OCAML

% ocaml
Objective Caml version 4.01

(* Read-eval-print loop; expressions and
declarations

2+3 (* Expression *)

- 1int=5
#3<2;;
- : bool = false

8/28/14 25

‘_.‘ No Overloading for Basic Arithmetic Operations

15 * 2;;
-:int =30
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
1.35 + 0.23;; (* Wrong type of addition *)
NANANN
Error: This expression has type float but an
expression was expected of type
int
1.35 +.0.23;;
- : float = 1.58

8/28/14 26

No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;; (* No Implicit Coercion *)
AANN
Error: This expression has type float but an
expression was expected of type
int

8/28/14 27

* Sequencing Expressions

"Hi there";; (* has type string *)
- : string = "Hi there"

"Hello world\n";; (* has type unit *)
Hello world

-:unit=()

(print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye

-:int =25

8/28/14 28

’ Declarations; Sequencing of Declarations

#letx =2+ 3;; (* declaration *)

valx:int=5

let test = 3 < 2;;

val test : bool = false

#leta=1letb =a+ 4;; (* Sequence of dec
*)

vala:int=1

valb:int=5

8/28/14 29

‘ Environments

= Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language
= Notation
p = {name, — value,;, name,— value,, ...}
Using set notation, but describes a partial function

= Often stored as list, or stack
= To find value start from left and take first match

8/28/14 30

iEnvironments

name = “Steve”

X3

y> 17 region = (5.4, 3.7)

- id = {Name = “Paul’, \
b = true Age = 23,

. SSN = 999/888777}

8/28/14

31

iGIobal Variable Creation

#2+3;; (* Expression *)

// doesn’ t affect the environment

lettest =3 < 2;; (* Declaration *)
val test : bool = false

/] p; = {test — false}

#leta=1letb =a+ 4;; (* Seq of dec *)
/] p, ={b—=5,a—1, test — false}

8/28/14 32

’ Environments

test = true

b=>5

8/28/14

33

* New Bindings Hide Old

/l p, ={b—5,a— 1, test — false}
let test = 3.7;,;

= What is the environment after this
declaration?

8/28/14 34

iNew Bindings Hide Old

/| p, ={b—5,a— 1, test — false}
let test = 3.7;;

= What is the environment after this
declaration?

// p3 ={teSt%3_7,ae 1,b%5}

8/28/14

35

‘ Environments

test = 3.7

b=>5

8/28/14 36

*

Now it's your turn

You should be able to do HW1
Problem 1, parts (* 1 *) and (* 2 *)

8/28/14 37

‘ Local Variable Creation

/] p; ={test—-=3.7,a—-1,b—=5
letb =
/] ps =4{b — 20,

test > 3.7
L_a>1
b>5

in2*b;;
-:int=40
/] ps = p5={test = 3.7, a—=1,b— 5}
#b;; O
-:int=5

8/28/14 38

* Local let binding

/] ps=A{test=3.7,a—1,b—=53—
#letc=
let b = 4
Il ps={b—=2}+p;
// ={b—2,test = 3.7,a—= 1}
inb *b;;
valc:int=4
/| p={c—4,test =3.7,a—1,b—5}
#b;;
-:int=5

a1 test>37
- b>5

8/28/14 39

* Local let binding

/| ps={test=3.7,a—1,b—

#letc=
let b =4

Il ps={b—= 2} +p;

/I ={b—=2
in b* b;

valc:int=4

/| p={c—4,test =3.7,a—1,b—5}

#b;;

-:int=5

a1 test>37
- b>5

8/28/14 40

ﬂcal let binding

/] ps=A{test =3.7,a—1,b =5

a1 test > 3.7

valc:int=4 T4 b5
// p;={c—4,test=3.7,a—1,b—-5}
#b;;

-:int=5

8/28/14 41

*

Now it's your turn

You should be able to do HW1
Problem 1, parts (* 3 *) and (* 4 *)

8/28/14 42

iBooIeans (aka Truth Values)

true;;
- : bool = true
false;;
- : bool = false

/| p;={c—4,test =3.7,a—1,b—5}
if b > athen 25 else 0;;
-1int =25

8/28/14 43

iBooleans and Short-Circuit Evaluation

#3>18&4>6;;

- : bool = false

#3>11(4>6;

- : bool = true

(print_string "Hi\n"; 3> 1) || 4 > 6;;
Hi

- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

not (4 > 6);;

- : bool = true

8/28/14 44

4

Now it's your turn

You should be able to do HW1
Problem 1, part (* 5 *)

8/28/14 45

* Tuples as Values

/] p; ={c—4, test = 3.7, 31025
a—>1 b_>5} test & 3.
., c>4
let s = (5,"hi",3.2);;
val s : int * string * float = (5, "hi", 3.2)

/] ps={s— (5, "hi", 3.2),
c— 4, test — 3.7,
a—1,b—5}

5
test > 3.7
c>4

s (5 ’hi", 3.2)

8/28/14 46

iPattern Matching with Tuples

[pg={s—(5"hi",3.2), @21 ®>5 yss2
c— 4, test - 3.7,
a—1,b—5}

let (a,b,c) =s;; (* (a,b,c) is a pattern *

vala:int=5

val b : string = "hi"

val ¢ : float = 3.2

Ocaml *)
val x : int * float = (2, 9.3)

8/28/14 47

35 b>'h test>37
s (5,’h",32) c>32
x> (2,9.3)

‘ Nested Tuples

(*Tuples can be nested *)

letd = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

val p :int * int * int = (1, 4, 62)

val st : string = "bye"

8/28/14 48

+

Now it's your turn

You should be able to do HW1
Problem 1, part (* 6 *)

8/28/14 49

iFunctions

let plus_two n=n+ 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int=19

8/28/14 50

* Functions

let plus_two n=n + 2;;

plus_two 17;'/
-:int =19

8/28/14 51

* Nameless Functions (aka Lambda Terms)

8/28/14 52

iFunctions

let plus_two n =n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-:int =19

let plus_two = funn->n + 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

-:int=16

|First definition syntactic sugar for second|

8/28/14 53

‘ Using a nameless function

(fun x->x *3) 5;; (* An application *)

-1int =15

((funy->y +.2.0), (funz->2z*3));;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is

only the body exp(v)

8/28/14 54

iValues fixed at declaration time

#letx = 12;;_>
val x :int =12

let plus_x yr=\y + X;;
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

8/28/14 55

iVaIues fixed at declaration time

#letx =12;;

val x:int =12

letplus_ xy =y +x;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int=15

8/28/14 56

* Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)
valx:int=7

plus_x 3;;

What is the result this time?

8/28/14 57

* Values fixed at declaration time

let x = 7;; (* New declaration, not an

update *)
valx:int=7

| What is the result this time?

8/28/14 58

iValues fixed at declaration time

letx =7;; (* New declaration, not an
update *)
valx:int=7

plus_x 3;;
-:int=15

8/28/14 59

iQuestion

= Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

= Answer: a closure

8/28/14 60

‘ Save the Environment!

= A closureis a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

f = < (v1,...,vn) — exp, ps >

= Where p¢ is the environment in effect when f
is defined (if f is a simple function)

8/28/14 61

‘ Closure for plus_x

= When plus_x was defined, had environment:
pp|u5_x - {X — 12, g Yy — 24, }
= Closure for plus_x:

<Y =Y+ X Pplus x >
= Environment just after plus_x defined:

{plus_x — <y =y + X, Pplus_x >} + Pplus_x

8/28/14 62

4

Now it's your turn

You should be able to do HW1
Problem 1, parts (* 7 *) and (* 8 *)

8/28/14 63

* Evaluation of Application of plus_x;;

= Have environment:
p =A{plus_x = <y =y +x, Pplus_x 7 - 1
y—3, ..}
where Pplus x = {x—=12,..,y—=24, ...}
= Eval (plus_xy, p) rewrites to

= Eval (App <y =y + X, Pplus x> 3 P)
rewrites to B

= Eval (y + x, {y = 3} +pp|us_x) rewrites to
= Eval 3 + 12, ppjys x) = 15

8/28/14 64

’ Functions with more than one argument

letadd_threexyz=x+y +z;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
valt:int=11
let add_three =
funx-> (funy-> (funz->x+vy +2);;
val add_three : int -> int -> int -> int = <fun>

|Again, first syntactic sugar for second |

8/28/14 65

‘ Partial application of functions

|Iet add_threexyz=x+y + z;; |

let h = add_three 5 4;;
val h :int -> int = <fun>
#h3;;

-:int=12

#h7;;

-:int=16

8/28/14 66

iFunctions as arguments

let thrice f x = f (f (f x));;

val thrice : ('fa->'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#94,;

-:int =10

thrice (fun s -> "Hil " ~ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

8/28/14 67

‘ Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-rint=7

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-rint*int = (3, 3)

double "hi";;

- 1 string * string = ("hi", "hi")

8/28/14 68

* Match Expressions

let triple_to_pair triple =
triple *Each clause: pattern on
left, expression on right
0, % y) > (X, ¥)
*Each x, y has scope of
(x,0,¥)->(x,¥) only its clause
v) (X, y);; |Use first matching clause

val triple_to_pair : int * int * int -> int * int =
<fun>

8/28/14 69

* Closure for plus_pair

= Assume p,s nair Was the environment just
before plus_pair defined

= Closure for plus_pair:
<(n,m) = n+m, Py pair™>
= Environment just after plus_pair defined:
{plus_pair = <(n,m) = n +m, pyys pair >+

* Pplus_pair

8/28/14 70

iEvaluation of Application with Closures

= In environment p, evaluate left term to closure,
€ = <(Xy..,X,) = b, p>

= (Xy,...,X,) variables in (first) argument

= Evaluate the right term to values, (v;,...,v,)

= Update the environment p to
p’ ={X; = Vi X, =V 3 p

= Evaluate body b in environment p’

8/28/14 71

‘ Evaluation of Application of plus_pair

= Assume environment
p={x—=3..,
plus_pair -<(n,m) —-n + m, pplus_pair>} +

Pplus_pair
Eval (plus_pair (4,x), p)=

Eval (App <(n,m) —n + m, Pplus_pair™ (4x), p)) =

Eval (App <(n,m) —n + m, Pplus_pair™ (4,3), p)) =

Eval(n + m,{n->4, m->3} + pplus_pair) =
Eval (4 + 3, {n->4, m-> 3} + ppus pair) = 7

8/28/14 72

iCIosure question

= If we start in an empty environment, and we
execute:

let f = fun=>n+5;;

(*0%)

let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;

What is the environment at (* 0 *)?

8/28/14 73

‘ Answer

po={f—=<n—=n+5{}>}

8/28/14 74

* Closure question

= If we start in an empty environment, and we
execute:

letf = fun=>n+5;;

let pair_map g (n,m) = (g n, g m);;
(*1%)

let f = pair_map f;;

What is the environment at (* 1 *)?

8/28/14 75

* Answer

pp={f—=<n—=n+5,{}>}
p; = {pair_map — <g (n,m) = (g n, g m),
{f><n—=n+5{}>}>,
f—><n—-n+5{}>}

8/28/14 76

’ Closure question

= If we start in an empty environment, and we
execute:

let f =fun=>n+5;;

let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;

(* 2%)

What is the environment at (* 2 *)?

8/28/14 77

‘ Answer

8/28/14 78

iCurried vs Uncurried

= Recall

val add_three : int -> int -> int -> int = <fun>
= How does it differ from

let add_triple (u,v,w) = u + v + w;;

val add_triple : int * int * int -> int = <fun>

= add_three is curried,
= add_triple is uncurried

8/28/14 79

‘ Curried vs Uncurried

add_triple (6,3,2);;
-rint=11
add_triple 5 4;;
Characters 0-10:
add_triple 5 4;;
NANANNNNNNNAN
This function is applied to too many arguments,
maybe you forgot a *;'
fun x -> add_triple (5,4,x);;
int -> int = <fun>

8/28/14 80

* Scoping Question

Consider this code:

let x = 27;;
let f x =
letx=5in
(fun x -> print_int x) 10;;

f12;;

What value is printed?
5

10

12

27

8/28/14 81

