
CS 421, Fall 2012

Sample Final Questions & Solutions

You should review the questions from the sample midterm exams, the real midterm exams, and the
homework, as well as these question.

1. Write a function get primes : int -> int list that returns the list of primes less than or equal to
the input. You may use the built-in functions / and mod. You will probably want to write one or more
auxiliary functions. Remember that 0 and 1 are not prime.

Solution: let rec every p l = match l with [] -> true | x::xs -> p x && every p xs

let not_divides n q = ((q = 0) || not(n mod q = 0))

let rec get_primes n =

match n with 0 -> []

| 1 -> []

| _ -> let primes = get_primes (n-1) in

if every (not_divides n) primes then n::primes else primes

2. Write a tail-recursive function largest: int list -> int option that returns Some of the largest
element in a list if there is one, or else None if the list is empty.

Solution: let rec largest_aux lgst list =

match list with [] -> lgst

| x :: xs -> match lgst with None -> largest_aux (Some x) xs

| Some l ->

largest_aux (if l > x then lgst else (Some x)) xs

let largest = largest_aux None

(* I would also accept *)

let largest list =

List.fold_left

(fun lgst x -> match lgst with None -> Some x

| Some l -> if l > x then lgst else Some x)

None

list

3. Write a function dividek: int -> int list -> (int -> ’a) -> ’a, that is in full Continuation
Passing Style (CPS), that divides n successively by every number in the list, starting from the last
element in the list. If a zero is encountered in the list, the function should pass 0 to k immediately,
without doing any divisions. You should use
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# let divk x y k = k(x/y);;

val divk : int -> int -> (int -> ’a) -> ’a = <fun>

for the divisions. An example use of dividek would be

# let report n = print_string "Result: "; print_int n; print_string "\n";;

val report : int -> unit = <fun>

# dividek 6 [1;3;2] report;;

Result: 1

- : unit = ()

Solution: let eqk a b k = k(a = b)

let rec dividek n list k =

match list

with [] -> k n

| 0::xs -> k 0

| x::xs ->

dividek n xs

(fun r -> eqk r 0 (fun b -> if b then k 0 else divk r x k)

4. a. Give most general (polymorphic) types for following functions (you don’t have to derive them):

let first lst = match lst with

| a:: aa -> a;;

let rest lst = match lst with

| [] -> []

| a:: aa -> aa;;

Solution: first : ∀ ’a. a’ list → ’a

rest : ∀ ’a. a’ list → ’a list

b. Use these types (i.e., start in an environment with these identifiers bound to these types) to give a
polymorphic type derivation for:

let rec foldright f lst z =

if lst = [] then z

else (f (first lst) (foldright f (rest lst) z))

in foldright (+) [2;3;4] 0

You should use the following types: [] : ∀’a. ’a list, and (::) : ∀’a. ’a → ’a list → ’a list.
Assume that the Relation Rule is extended to allow equality at all types.
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Solution: Let us use LR for the Let Rec rule, F for the Function rule, A for the Application rule, If for the
If then else rule, C for the Constants rule, V for the variable rule, and R for the Relations rule. Let

Γ = {first : ∀ ’a. a’ list→ ’a; rest : ∀ ’a. a’ list→ (’a list)}
Γ1 = {foldright : (’a→ ’b→ ’b)→ (’a list)→ ’b→ ’b} ∪ Γ
Γ2 = {foldright : ∀ ’a ’b. (’a→ ’b→ ’b)→ (’a list)→ ’b→ ’b} ∪ Γ
Γ3 = {f : ’a→ ’b→ ’b} ∪ Γ1

Γ4 = {lst : ’a list} ∪ Γ3}
Γ5 = {z : ’b} ∪ Γ4

Let Tree1 =

V
Γ5 `f: ’a→ ’b→ ’b

V
Γ5 `first: ’a list→ ’a

V
Γ5 `lst: ’a list

A
Γ5 `first lst: ’a

A
Γ5 `f (first lst): ’b→ ’b

Let Tree2 =
V

Γ5 ` foldright:
(’a→ ’b→ ’b)→

(’a list)→ ’b→ ’b

V
Γ5 `f:
(’a→ ’b→ ’b)

A
Γ5 `foldright f: (’a list)→ ’b→ ’b

V
Γ5 `rest:
’a list→ ’a list

V
Γ5 `lst:
’a list

A
Γ5 `rest lst: ’a list

A
Γ5 `foldright f (rest lst): ’b→ ’b

V
Γ5 `z: ’b

A
Γ5 `foldright f (rest lst) z: ’b

The type variable ’a in each isntance of the Variable rule for first and rest , we speciallize ’a to int.

Let Tree3 =

C
(::):int→
int list→ int

C
2 : int

A
(::)2:int list→ int

C
(::):int→
int list→ int

C
3 : int

A
(::)3:int list→ int

C
(::):int→
int list→ int

C
4 : int

A
(::)4:int list→ int

C
[]:int list

A
(::)4 []:int list

A
(::)3((::)4 []):int list

A
Γ1 ` [2;3;4] : int list

In each instance of the Constant Rule for (::) and [], we speciallize ’a to int.
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Let Tree4 =
V

Γ2 `foldright:
(int→ int→ int)→
(int list)→ int→ int

C
Γ2 `(+): int→ int→ int

A
Γ2 `foldright (+): int list→ int→ int Tree3

A
Γ2 `foldright (+) [2;3;4]: int→ int

C
Γ2 `0: int

A
Γ2 `foldright (+) [2;3;4] 0: int

In the Variable Rule we specialize both ’a and ’b to int.

Using these proofs we have:

V
Γ5 `lst: ’a list

C
Γ5 ` [] : ’a list

R
Γ5 `lst = []:bool

V
Γ5 `z: ’b

Tree1 Tree2
A

Γ5 `f (first lst) (foldright f (rest lst) z): ’b
If

Γ5 `if lst = [] then z else (f (first lst) (foldright f (rest lst) z)): ’b
F

Γ4 ` fun z -> if lst = [] then z else (f (first lst) (foldright f (rest lst) z)):’b→ ’b
F

Γ3 ` fun lst -> fun z ->

if lst = [] then z else (f (first lst) (foldright f (rest lst) z)):

(’a list)→ ’b→ ’b
F

Γ1 ` fun f -> fun lst -> fun z− >
if lst = [] then z else (f (first lst) (foldright f (rest lst) z)):

(’a→ ’b→ ’b)→ (’a list)→ ’b→ ’b Tree4
LR

Γ ` let rec foldright = fun f -> fun lst -> fun z ->

if lst = [] then z else (f (first lst) (foldright f (rest lst) z))

in foldright (+) [2;3;4] 0 : int

This time, the ’a in the Constant Rule for [] is specialized to ’a.

5. For each of the regular expressions below (over the alphabet {a,b,c}), give a right regular gramar that
derives exactly the same set of strings as the set of strings generated by the given regular expression.

i) a*∨b*∨c*

ii) ((aba∨bab)c(aa∨bb))*

iii) (a*b*)*(c∨ε)(b*a*)*

Solution: i) a*∨b*∨c*
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S ::= ε | aA | bB | cC
A ::= ε | aA
B ::= ε | bB
C ::= ε | cC

ii) ((aba∨bab)c(aa∨bb))*
S ::= ε | aA | bB
A ::= bC
B ::= aD
C ::= aE
D ::= bE
E ::= cF
F ::= aG | bH
G ::= aS
H ::= bS

iii) (a*b*)*(c∨ε)(b*a*)*
S ::= ε | aS | bS | cA
A ::= ε | aA | bA

6. Consider the following ambiguous grammar (Capitals are nonterminals, lowercase are terminals):

S ::= A a B | B a A
A ::= b | c
B ::= a | b

a. Give an example of a string for which this grammar has two different parse trees, and give their
parse trees.
Solution: A string with two parses is “bab”, and its parse trees are:

S
�
�

@
@

S
�
�

@
@

A a B B a A

b b b b

b. Disambiguate this grammar.

Solution: S ::= b a a | b a b | c a a | c a b | a a b | a a c | b a c
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7. Write a unambiguous grammar for regular expressions over the alphabet {a,b}. The Kleene star binds
most tightly, followed by concatenation, and then choice. Here we will have concatenation and choice
associate to the right. Write an Ocaml datatype corresponding to the tokens for parsing regular expres-
sions, and one for capturing the abstract syntax trees corresponding to parses given by your grammar.
Write a recursive descent parser for regular expressions, taking a list of tokens and producing an option
(Some) of an abstract syntax tree if a parse for the whole list exists, or None otherwise.

Solution:
reg ::= a | b | ε | ( reg ) | reg ∨ reg | reg reg | reg∗

Atom ::= a|b|ε|(RegExp)
Star ::= Atom|Star *
Concat ::= Star|Star Concat
RegExp ::= Concat|Concat ∨RegExp

type tokens = A_tk | B_tk | Epsilon_tk | LParen | RParen | Star_tk | Or_tk

type atom = A | B | Epsilon | Paren of regexp

and star = Atom of atom | Star of star

and concat = StarAsConcat of star | Concat of (star * concat)

and regexp = ConcatAsRegExp of concat | Choice of (concat * regexp)

let rec mk_star (tree, tokens) =

match tokens with Star_tk::more_toks -> mk_star (Star tree, more_toks)

| _ -> (tree, tokens)

let rec atom tokens =

match tokens with (A_tk::rem_toks) -> (Some A,rem_toks)

| (B_tk::rem_toks) -> (Some B,rem_toks)

| (Epsilon_tk::rem_toks) -> (Some Epsilon,rem_toks)

| (LParen::more_toks) ->

(match regexp more_toks with

(Some tree, RParen::rem_toks) -> (Some(Paren tree),rem_toks)

| (_, rem_toks) -> (None, rem_toks))

| _ -> (None, tokens)

and star tokens =

match atom tokens with

(Some tree, rem_toks) ->

(match mk_star (Atom tree, rem_toks) with

(stree, toks) -> (Some stree, toks))

| (None, rem_toks) -> (None, rem_toks)

and concat tokens =

match star tokens with

(Some tree, rem_toks) ->

(match rem_toks with

A_tk::_ ->

(match concat rem_toks with (Some tree1, more_toks) ->

(Some(Concat(tree,tree1)), more_toks)
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| (None, more_toks) -> (None, more_toks))

| B_tk::_ ->

(match concat rem_toks with (Some tree1, more_toks) ->

(Some(Concat(tree,tree1)), more_toks)

| (None, more_toks) -> (None, more_toks))

| LParen::_ ->

(match concat rem_toks with (Some tree1, more_toks) ->

(Some(Concat(tree,tree1)), more_toks)

| (None, more_toks) -> (None, more_toks))

| _ -> (Some (StarAsConcat tree), rem_toks))

| (None, rem_toks) -> (None, rem_toks)

and regexp tokens =

match concat tokens with

(Some tree, more_tokens) ->

(match more_tokens with (Or_tk :: more_toks1) ->

(match regexp more_toks1 with

(Some tree1, rem_toks) -> (Some(Choice (tree, tree1)), rem_toks)

| (None, rem_toks) -> (None, rem_toks))

| _ -> (Some (ConcatAsRegExp tree), more_tokens))

| (None, rem_tokens) -> (None, rem_tokens)

let parse tokens =

match regexp tokens with (result, []) -> result | _ -> None

8. a. Write the transition semantics rules for if then else and repeat until . (A repeat until
executes the code in the body of the loop and then checks the condition, exiting if the condition

is true.)

Solution: Let m represent the current state. If then else rules:

(if true then C1else C2 fi ,m)→ (C1,m)

(if false then C1else C2,m) fi → (C2,m)

(B,m)→ (B′,m)

(if B then C1else C fi ,m)→ (if B′ then C1else C1 fi ,m)

(repeat C until B,m)→ (C; if B then skip else (repeat C until B) fi ,m)

b. Assume we have an OCaml type bexp with constructors True and False corresponding to true
and false, and other constructors representing the syntax trees of non-value boolean expressions.
Futher assume we have a type mem of memory associating variables (represented by strings) with
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values, a type exp for integer expressions in our language, a type comm for language commands with
constructors including IfThenElse of bexp * comm * comm, RepeatUntil of comm * bexp, and
Seq: comm * comm, and type

type eval_comm_result = Mid of (comm * mem) | Done of mem

Further suppose we have a function eval bexp : (bexp * mem) -> (bexp * mem) that returns
the result of one step of evaluation of an expression.

Write Ocaml clauses for a function eval comm : (comm*mem) -> eval comm result for the case
of IfThenElse and RepeatUntil. You may assume that all other needed clauses of eval comm have
been defined, as well as the function eval bexp: (bexp*mem) -> (bexp*mem).

Solution: let rec eval_comm (comm, mem) =

match comm with

. . .

| IfThenElse (True, thenclause, elseclause) -> Mid (thenclause, mem)

| IfThenElse (False, thenclause, elseclause) -> Mid (elseclause, mem)

| IfThenElse (b, thenclause, elseclause) ->

(match eval_bexp (b, mem) with (new_b, mem’) ->

Mid (IfThenElse (new_b, thenclause, elseclause), mem’) )

. . .

| RepeatUntil(c,b) ->

Mid (Seq (c, IfThenElse (b, Skip, RepeatUntil(c,b))), mem)

9. Assume you are given the OCaml types exp, bool exp and comm with (partially given) type definitions:

type comm = ... | If of (bool_exp * comm * comm) | ...

type bool_exp = True_exp | False_exp | ...

where the constructor If is for the abstract syntax of an if then else construct. Also assume you have a
type mem of memory associating values to identifiers, where values are just intergers (int). Further assume
you are given a function eval bool: (mem * bool exp) -> bool for evaluating boolean expressions.
Write the OCaml code for the clause of eval comm:(mem * comm) -> mem that implements the following
natural semantics rules for the evaluation of if then else commands:

〈m, b〉 ⇓ true 〈m,C1〉 ⇓ m′

〈m, if b then C1 else C2〉 ⇓ m′
〈m, b〉 ⇓ false 〈m,C2〉 ⇓ m′′

〈m, if b then C1 else C2〉 ⇓ m′′

Solution: let rec eval_comm (mem, comm) =

match comm with . . .

| If (bexp,c1,c2) ->

(match eval_bool (mem, bexp) with true -> eval_comm (mem, c1)

| false -> eval_com (mem, c2))

. . .
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10. Using the natural semanitics rules given in class, give a proof that, starting with a memory that maps
x to 5 and y to 3, if x = y then z := x else z := x + y evaluates to a memory where x maps to 5,
y maps to 3. and z maps to 8.

Solution: Let m = {x 7→ 5; y 7→ 3}.

〈m, x〉 ⇓ 5 〈m, y〉 ⇓ 3 (5 = 3) = false

〈{x 7→ 5; y 7→ 3}, x = y〉 ⇓ false

〈m, x〉 ⇓ 5 〈m, y〉 ⇓ 3 5 + 3 = 8

〈{x 7→ 5; y 7→ 3}, z := x + y〉 ⇓ 〈{x 7→ 5; y 7→ 3; z 7→ 8}

〈{x 7→ 5; y 7→ 3}, if x = y then z := x else z := x + y〉 ⇓ 〈{x 7→ 5; y 7→ 3; z 7→ 8}

11. Prove that λx.x(λz.zxz) is α-equivalent λz.z(λx.xzx). You should label every use of α-conversion and
congruence.

Solution: By α-conversion
λx.x(λz.zxz)

α−→λy.y(λz.zyz).

Because α-conversion implies α-equivalence, we have

λx.x(λz.zxz)
α∼λy.y(λz.zyz).

By α-conversion
λz.zyz

α−→λx.xyx

and thus
λz.zyz

α∼λx.xyx

. By congruence for application, we have

y(λz.zyz)
α∼y(λx.xyx),

and by congreunce for abstraction, we have

λy.y(λz.zyz)
α∼λy.y(λx.xyx).

By transitivity, we then have
λx.x(λz.zxz)

α∼λy.y(λx.xyx).

By α-conversion,
λy.y(λx.xyx)z

α−→λz.z(λx.xzx)

Again, because α-conversion implies α-equivalence, we have

λy.y(λx.xyx)
α∼λz.z(λx.xzx)

and by transitivity, we have
λx.x(λz.zxz)

α∼λz.z(λx.xzx)

as was to be shown.
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12. Reduce the following expression: (λxλy.yz)((λx.xxx)(λx.xx))

a. Assuming Call by Name (Lazy Evaluation)

Solution: With Call by Name (Lazy Evaluation):
(λx.λy.yz)((λx.xxx)(λx.xx))− β → (λy.yz)

b. Assuming Call by Value (Eager Evaluation)

Solution: With Call by Value (Eager Evaluation):
(λx.λy.yz)((λx.xxx)(λx.xx))− β →
(λx.λy.yz)((λx.xx)(λx.xx)(λx.xx))− β →
(λx.λy.yz)((λx.xx)(λx.xx)(λx.xx))− β →
... (the expression doesn’t terminate)

c. To full αβ-normal form.

Solution: Since lazy evaluation yielded an αβ-normal form. we may use its reduction: (λx.λy.yz)((λx.xxx)(λx.xx))−
β → (λy.yz)

13. Give a proof in Floyd-Hoare logic of the partial correctness assertion:

{True} y := w; if x = y then z := x else z := y {z = w}

Solution: Because this proof tree is rather wide, we shall break it up into pieces.
Let Tree1 =

((y = w) & (x = y))⇒ (x = w)
A

{x = w} z := x {z = w}
PS

{(y = w) & (x = y)} z := x {z = w}
Let Tree2 =

{(y = w) & (x 6= y)} ⇒ (y = w)
A

{y = w} z := y {z = w}
PS

{(y = w) & (x 6= y)} z := y {z = w}
Then the main proof tree is

True⇒ (w = w)
A

{w = w} y := w {y = w}
PS

{True} y := w {y = w}

Tree1 Tree2
ITE

{y = w} if x = y then z := x else z := y {z = w}
Seq

{True} y := w; if x = y then z := x else z := y {z = w}

14. What should the Floyd-Hoare logic rule for repeat C until B be? The code causes C to be executed,
and then, if B is true it completes, and otherwise it does repeat C until B again.
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Solution:
{Q ∨ (P ∧ (¬B))} C {P}

{Q} repeat C until B {P ∧B}
But I would accept the weaker

{P} C {P}

{P}repeat C until B {P ∧B}
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