
CS421 Fall 2014 Midterm 2 Solution

Name:

NetID:

• You have 75 minutes to complete this exam.

• This is a closed-book exam. All materials (e.g., calculators, cell phones
and scrap paper), except writing utensils are prohibited.

• Do not share anything with other students. Do not talk to other students.
Do not look at another students exam. Do not expose your exam to easy
viewing by other students. Violation of any of these rules will count as
cheating.

• If you believe there is an error, or an ambiguous question, you may seek
clarification from myself or one of the TAs. You must use a whisper, or
write your question out. Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 20 pages to the
exam, including two blank pages for workspace. Please verify that you
have all 20 pages.

• Please write your name and NetID in the spaces above, and also in the
provided space at the top of every sheet.

CS421 Fall 2014 Midterm #2 NetID:

Question Points Bonus Points Score

1 16 0

2 16 0

3 14 0

4 13 0

5 16 0

6 25 0

7 0 10

Total: 100 10

Page 2

CS421 Fall 2014 Midterm #2 Name:

Problem 1. (16 points)
Below are a serries of partial type deriviations, some of which contain errors. For each
one select whether all steps of the derivation present are correct, and if not, circle at
least one error with the derivation. There may be more than one error, but you only
need to circle one.

(a) (4 points)

Const
{x:int}
` (+):int -> int -> int

Var
{x:int}
` x:int

App
{x:int} ` (+)x:int -> int

Var
{y:int}
` y:int

App
{x:int} ` (x+y):int

Fun
{x:bool} ` (fun x -> x+y):int -> int

Select one:

© The proof is correct, as much as is shown√
The proof is incorrect and I have circled an error

(b) (4 points)

{x:bool}
` (fun x -> x::[])

:’a -> ’a list

with [bool list/’a]
Var

{x:bool,
s:∀’a -> ’a list}
` s:bool list|

-> bool list list

with [bool/’a]
Var

{x:bool,
s:∀’a -> ’a list}
` s:bool ->

bool list

Var
{x:bool,
s:∀’a -> ’a list}
` x:bool

App
{x:bool,
s:∀’a -> ’a list}
` s x:bool list

App
{x:bool,
s:∀’a -> ’a list}
` s(s x):bool list list

Let
{x:bool} ` let s = fun x -> x::[] in s(s x):bool list list

Select one:√
The proof is correct, as much as is shown

© The proof is incorrect and I have circled an error

Page 3

CS421 Fall 2014 Midterm #2 NetID:

(c) (4 points)

Var
{h:’a -> ’a}
` h:bool -> bool

Const
{h:’a -> ’a}
` true:bool

App
{h:’a -> ’a}
` h true:bool

Const
{h:’a -> ’a} ` 7:int

Var
{h:’a -> ’a}
` h:int -> int

Const
{h:’a -> ’a}
` 13:int

App
{h:’a -> ’a}
` h 13:int

If
{h:’a -> ’a} ` (if h true then 7 else h 13):int

Select one:

© The proof is correct, as much as is shown
√

The proof is incorrect and I have circled an error

(d) (4 points)

{y:’a list}
` (fun x -> x::[])

:’a -> ’a list

with [’a list list/’a]
Var

{y:’a list,

s:∀’a -> ’a list}
` s:’a list list|

-> ’a list list list

with [’a list/’a]
Var

{y:’a list,

s:∀’a -> ’a list}
` s:’a list ->

’a list list

Var
{y:’a list,

s:∀’a -> ’a list}
` y:’a list

App
{y:’a list,

s:∀’a -> ’a list}
` s y:’a list list

App
{y:’a list,

s:∀’a -> ’a list }
` s(s y):’a list list list

Let
{y:’a list} ` let s = fun x -> x::y in s(s y):’a list list list

Select one:

© The proof is correct, as much as is shown
√

The proof is incorrect and I have circled an error

Page 4

CS421 Fall 2014 Midterm #2 Name:

Problem 2. (16 points)
Use the unification algorithm described in class and in MP7 to answer which of these
given equations holds for the stated reason, and when it diesn’t, to indicate why not.
In this problem, we use = as the separator for constraints. The uppercase letters X,
Y , and Z, denote variables of unification. The lowercase letters g, f , p, and l are
term constructors of arity 3, 2, 2, and 1 respectively (i.e. take three, two, two or one
argument(s), respectively). The letters b and i are constants (constructor of arity 0). For
each problem you are asked to check if the equation is correct for the stated reason(s),
and if not, briefly why not. For a reason why not, you may underline a portion and write
in the given space what it should have been if this will yield an approrpiate reason.

(a) (2 points)

Unify{(l(Z) = l(f(X,X))); (g(f(X, p(A,A)), p(X, Y), b) = g(Z, p(Y,X), b))}
= Unify{(Z = f(X,X)); (g(f(X, p(X,X)), p(X, Y), b) = g(Z, p(Y,X), b))}
by Decompose with (l(Z) = l(f(X,X)))

Select one:

© The step is correct for the stated reason
√

The right-hand side does not equal the left-hand side for the
stated reason because

(a) p(A,A) should have been p(X,X)

(b) (2 points)

Unify{(Z = f(X,X)); (g(f(X, p(X,X)), p(X, Y), b) = g(Z, p(Y,X), b))}
= Unify{(g(f(X, p(X,X)), p(X, Y), b) = g(f(X,X), p(Y,X), b))}o{Z 7→ f(X,X)}
by Eliminate with (Z = f(X,X))

Select one:
√

The step is correct for the stated reason

© The right-hand side does not equal the left-hand side for the stated reason
because

(b)

Page 5

CS421 Fall 2014 Midterm #2 NetID:

(c) (2 points)

Unify{(g(f(X, p(X,X)), p(X, Y), b) = g(f(X,X), p(Y,X), b))}o{Z 7→ f(X,X)}
= Unify{(f(X, p(X,X)) = f(X,X)); (p(X, Y) = p(Y,X))}o{Z 7→ f(X,X)}
by Decompose with (g(f(X, p(X,X)), p(X, Y), b) = g(f(X,X), p(Y,X), b))

Select one:

© The step is correct for the stated reason
√

The right-hand side does not equal the left-hand side for the
stated reason because

(c) The second part is missing the equation (b = b)

(d) (2 points)

= Unify{(f(X, p(X,X)) = f(X,X)); (p(X, Y) = p(Y,X))}o{Z 7→ f(X,X)}
Unify{(X = X); (p(X,X) = X); (p(X, Y) = p(Y,X))}o{Z 7→ f(X,X)}
by Decompose with (f(X, p(X,X)) = f(X,X))

Select one:
√

The step is correct for the stated reason

© The right-hand side does not equal the left-hand side for the stated reason
because

(d)

(e) (2 points)

Unify{(X = X); (p(X,X) = X); (p(X, Y) = p(Y,X))}o{Z 7→ f(X,X)}
= Unify{(p(X,X) = X); (p(X, Y) = p(Y,X))}o{X 7→ X}o{Z 7→ f(X,X)}
by Eliminate with (X = X)

Select one:

© The step is correct for the stated reason
√

The right-hand side does not equal the left-hand side for the
stated reason because

(e) The reason is wrong. It should be “by Delete (X = X)”.

Page 6

CS421 Fall 2014 Midterm #2 Name:

(f) (2 points)

Unify{(p(X,X) = X); (p(X, Y) = p(Y,X))}o{Z 7→ f(X,X)}
= Unify{(X = p(X,X)); (X = Y); (Y = X)}o{Z 7→ f(X,X)}
by Decompose with (p(X, Y) = p(Y,X))

Select one:

© The step is correct for the stated reason√
The right-hand side does not equal the left-hand side for the
stated reason because

(f) (p(X,X) = X) can not be swapped around in Decompose.

(g) (2 points)

Unify{(X = p(X,X)); (X = Y); (Y = X)}o{Z 7→ f(X,X)}
= Unify{(Y = p(Y, Y))}o{Z 7→ f(X,X)}o{X 7→ Y }
by Eliminate with (p(X, Y) = p(Y,X))

Select one:

© The step is correct for the stated reason

© The right-hand side does not equal the left-hand side for the stated reason
because

(g)
(p(X, Y) = p(Y,X)) doesn’t exist in the constraint set,
and it isn’t appropriate for Eliminate

(h) (2 points)

Unify{(Y = p(Y, Y))}o{Z 7→ f(Y, Y);X 7→ Y }
= {Z 7→ f(p(Y, Y), p(Y, Y));X 7→ p(Y, Y);Y 7→ p(Y, Y)}by Eliminate with (Y = p(Y, Y))

Select one:

© The step is correct for the stated reason√
The right-hand side does not equal the left-hand side for the
stated reason because

(h) Y = p(Y, Y) fails the occurs check test for Eliminate.

Page 7

CS421 Fall 2014 Midterm #2 NetID:

Page 8

CS421 Fall 2014 Midterm #2 Name:

Problem 3. (14 points)
The code given for MP7 in the Mp7common module includes the following data types to
represent the types of PicoML and type substitutions:

type typeVar = int

type monoTy = TyVar of typeVar | TyConst of (string * monoTy list)

type substitution = (typeVar * monoTy) list

(a) (6 points) Implement the function subst fun:substitution -> typeVar -> monoTy

that takes a substitution as a list and returns a function that takes a type variable
as input and returns the replacement type as given by the substitution. If no
substitute monoTy is given in the substitution for the type variable, then the monoTy

corresponding to the type variable is returned. You may use Library functions, but
you must use them correctly for credit.

Solution:

let rec subst_fun subst m =

match subst with [] -> TyVar m

| (n,ty) :: more -> if n = m then ty else subst_fun more m

(b) (8 points) A substitution φ, when lifted to a monoTy, replaces all the type variables
occurring in the monoTy with the corresponding monoTys. Implement the function
monoTy lift subst:substitution -> monoTy -> monoTy for lifting substitutions
to generic monoTys.

Solution:

let rec monoTy_lift_subst subst monoTy =

match monoTy

with TyVar m -> subst_fun subst m

| TyConst(c, typelist) ->

TyConst(c, List.map (monoTy_lift_subst subst) typelist)

Page 9

CS421 Fall 2014 Midterm #2 NetID:

Problem 4. (13 points)
Consider the set of all strings over the alphabet { 0, 1, [,], ; } that represent OCaml lists
of 0’s and 1’s, where a list in OCaml begins with a single left square bracket ([),followed
by a possibly empty sequence of 0’s and 1’s separated by single semicolons and terminated
by a single right square bracket. There is no semicolon following the last digit in the list.

(a) (6 points) Write a regular expression describing the set of binary list given above. In
writing a regular expression describing this set of strings, you may use the notation
for basic regular expressions (Kleene’s notation), or you may use omcallex syntax,
but these are the only syntax allowed.

Solution:
([]) ∨ ([(0 ∨ 1)((; (0 ∨ 1))∗)])

(b) (7 points) Write a (right) regular grammar describing the same set of strings.

Solution:
< list >::= [< first >

< first >::=]
| 0 < semi or done >
| 1 < semi or done >

< semi or done >::=]
| ;< bit >

< bit >::= 0 < semi or done >
| 1 < semi or done >

Page 10

CS421 Fall 2014 Midterm #2 Name:

Problem 5. (16 points)
Given the following BNF grammar, for each of the following strings, give a parse tree
for it, if it parses starting with < ty >, or write None exists if it does not parse starting
with < ty >. The terminals for this grammar are { a, b, int, list, * (,) }. The
non-terminal are < ty >, < m >, and < at >.

< ty >::= < at > | < at > < m >
< m >::= * < ty > | list < m > | list
< at >::= a | b | int|(< ty >)

(a) (5 points) int list int * int list

Solution: None exists. An invariant of the grammar is that the only thing that
can come right before an int is a (or nothing.

Page 11

CS421 Fall 2014 Midterm #2 NetID:

Given the following BNF grammar, for each of the following strings, give a parse
tree for it, if it parses starting with < ty >, or write None exists if it does not parse
starting with < ty >. The terminals for this grammar are { a, b, int, list, * (,) }.
The non-terminal are < ty >, < m >, and < at >.

< ty >::= < at > | < at > < m >
< m >::= * < ty > | list < m > | list
< at >::= a | b | int|(< ty >)

(b) (5 points) b * (int * list) * a list

Solution: None exists. list is a < m >, and a < m > can only be preceded
by an < at > and no < at > can end in a *.

Page 12

CS421 Fall 2014 Midterm #2 Name:

Given the following BNF grammar, for each of the following strings, give a parse
tree for it, if it parses starting with < ty >, or write None exists if it does not parse
starting with < ty >. The terminals for this grammar are { a, b, int, list, * (,) }.
The non-terminal are < ty >, < m >, and < at >.

< ty >::= < at > | < at > < m >
< m >::= * < ty > | list < m > | list
< at >::= a | b | int|(< ty >)

(c) (6 points) (int * a list) list * b

Solution: This time one does exist.

< ty >
����

HHHH
< at > < m >
�
�

@
@

(< ty >)

�
�

@
@

list < m >
�
�

@
@

< at > < m >

�
�

@
@

< at > < m >

�
�

@
@

* < ty >

int

�
�

@
@

* < ty > < at >
�
�

@
@

< at > < m > b

a list

Page 13

CS421 Fall 2014 Midterm #2 NetID:

Problem 6. (25 points)
Consider the following grammar over the terminal alphabet {int, list, ∗, ’a, ’b, (,)}
and non-terminal alphabet {<ty>, <var>}:

< ty > ::= int | < ty > ∗ < ty > | < ty > list | (< ty >)

Let L be the language generated by <ty>. You will be presented with a collection of
grammars over the same terminal alphabet with start symbol <ty>, and you are ask to
determine which of a collection of properties the new grammar has.

(a) (5 points) Nonterminals: {<ty>, <r>, <at>}, Grammar:

< ty > ::= < r > | < ty > list

< r > ::= < at > | < at > ∗ < r > | < at > list ∗ < r >
< at > ::= int |(< ty >)

• The grammar is unambiguous√
True © False

• Every string the grammar parses is in L√
True © False

• The grammar parses every string in L
© True

√
False

• The grammar fails to make * always associate to the right or fails to always to
make * always have higher precedence than list√

True © False

• The grammar fails to parse at least one of {int list list, int * int list list * int}√
True © False

(b) (5 points) Nonterminals: {<ty>, <n>, <at>}, Grammar:

< ty > ::= < n > | < ty > list | < ty > list ∗ < n >
< n > ::= < at > | < at > ∗ < n >
< at > := int | (< ty >)

• The grammar is unambiguous√
True © False

• Every string the grammar parses is in L√
True © False

• The grammar parses every string in L√
True © False

• The grammar fails to make * always associate to the right or fails to always to
make * always have higher precedence than list
© True

√
False

• The grammar fails to parse at least one of {int list list, int * int list list * int}
© True

√
False

Page 14

CS421 Fall 2014 Midterm #2 Name:

(c) (5 points) Nonterminals: {<ty>, <p>, <r>, <at>}, Grammar:

< ty > ::= < p > | < p > list
< p > ::= < at > | < p > list | < at > ∗ < r > | < p > list ∗ < r >
< r > ::= < at > | < at > ∗ < r >
< at > := int | (< ty >)

• The grammar is unambiguous
© True

√
False

• Every string the grammar parses is in L√
True © False

• The grammar parses every string in L√
True © False

• The grammar fails to make * always associate to the right or fails to always to
make * always have higher precedence than list
© True

√
False

• The grammar fails to parse at least one of {int list list, int * int list list * int}
© True

√
False

(d) (5 points) Nonterminals: {<ty>, <p>, <at>}, Grammar:

< ty > ::= < at > list | < p > | < p > ∗ < at > list
< p > ::= < p > ∗ < at > | < at >
< at > := int | (< ty >)

• The grammar is unambiguous√
True © False

• Every string the grammar parses is in L√
True © False

• The grammar parses every string in L
© True

√
False

• The grammar fails to make * always associate to the right or fails to always to
make * always have higher precedence than list√

True © False

• The grammar fails to parse at least one of {int list list, int * int list list * int}√
True © False

Page 15

CS421 Fall 2014 Midterm #2 NetID:

(e) (5 points) Nonterminals: {<ty>, <n>, <p>, <at>}, Grammar:

< ty > ::= < n > | < n > ∗ < p >
< p > ::= < at > | < at > ∗ < p >
< n > ::= < at > | < ty > list

< at > := int | (< ty >)

• The grammar is unambiguous√
True © False

• Every string the grammar parses is in L√
True © False

• The grammar parses every string in L√
True © False

• The grammar fails to make * always associate to the right or fails to always to
make * always have higher precedence than list
© True

√
False

• The grammar fails to parse at least one of {int list list, int * int list list * int}
© True

√
False

Page 16

CS421 Fall 2014 Midterm #2 Name:

Workspace

Page 17

CS421 Fall 2014 Midterm #2 NetID:

7. (10 points (bonus)) Using recursive descent parsing and the grammar you gave in Prob-
lem 4.b, write a function

to list : char list -> (int list option * char list)

that returns the int list that is the largest int list represented by the front of the
input char list, paired with the characters not used. Your function should return None

if there is no list (not even the empty list) represented by the characters at the front of
the input list.

Solution: The grammar in 4b may be presented as

< list >::= [< first >
< first >::=] | ((0 | 1) < semi or done >)

< semi or done >::=] | ;< bit >
< bit >::= (0 | 1) < semi or done >

let add_bit c res =

(match res with (None, chs) -> res

| (Some lst, chs) ->

(match c with ’0’ -> (Some (0::lst), chs)

| ’1’ -> (Some (1::lst), chs)))

let rec to_list chrlist =

match chrlist with [] -> (None, chrlist)

| (’[’::remchl) -> first remchl

| _ -> (None, chrlist)

and first chrlist =

match chrlist with [] -> (None, chrlist)

| (c::remchl) ->

(match c with ’]’ -> (Some [], remchl)

| _ -> if c = ’0’ || c = ’1’

then add_bit c (semi_or_done remchl)

else (None, chrlist))

and semi_or_done chrlist =

match chrlist with (’]’::remchl) -> (Some [], remchl)

| (’;’::remchl) -> bit remchl

| _ -> (None, chrlist)

and bit chrlist =

match chrlist with [] -> (None, chrlist)

| (c::remchl) -> if c = ’0’ || c = ’1’

then add_bit c (semi_or_done remchl)

else (None, chrlist)

Page 18

CS421 Fall 2014 Midterm #2 Name:

Workspace

Page 19

CS421 Fall 2014 Midterm #2 NetID:

A Polymoprhic Typing Rules

Polymorphic constant signatures:

sig(n) = int n an integer constant sig(⊕) = int→ int→ int for ⊕ ∈ {+,−, ∗,% . . .}
sig(true) = bool sig(false) = bool

sig(∼) = ∀α. α→ α→ bool for ∼ ∈ {<,>,=,≤,≥}
sig([]) = ∀α. αlist sig((::)) = ∀α. α→ α list→ α list

sig((,)) = ∀αβ. α→ β → α*β

Constants:

Γ ` c : τ ′
Const

where c is a constant listed above, sig(c) = ∀α1 . . . αn. τ and
there exist σ1, . . . , σn such that τ ′ = τ [σ1/α1; . . . ;σn/αn]

Variables:

Γ ` x : τ ′
Var

where ∀α1 . . . αn. τ = Γ(x) and
there exist σ1, . . . , σn such that τ ′ = τ [σ1/α1; . . . ;σn/αn]

Connectives:

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 && e2 : bool
Conn

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 || e2 : bool
Conn

If then else rule:

Γ ` ec : bool Γ ` et : τ Γ ` ee : τ

Γ ` if ec then et else ee : τ
If

Application rule: Function rule:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
App

[x : τ1] + Γ ` e : τ2

Γ ` fun x -> e : τ1 → τ2
Fun

Let rule:

Γ ` e1 : τ1 [x : Gen(τ1,Γ)] + Γ ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
Let

Let Rec rule:

[x : τ1] + Γ ` e1 : τ1 [x : Gen(τ1,Γ)] + Γ ` e2 : τ2

Γ ` let rec x = e1 in e2 : τ2
Rec

Page 20

