
CS421 Fall 2014 Midterm 1

Name:

NetID:

• You have 75 minutes to complete this exam.

• This is a closed-book exam. All materials (e.g., calculators, cell phones
and scrap paper), except writing utensils are prohibited.

• Do not share anything with other students. Do not talk to other students.
Do not look at another students exam. Do not expose your exam to easy
viewing by other students. Violation of any of these rules will count as
cheating.

• If you believe there is an error, or an ambiguous question, you may seek
clarification from myself or one of the TAs. You must use a whisper, or
write your question out. Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 16 pages to the
exam, including one blank page for workspace. Please verify that you
have all 16 pages.

• Please write your name and NetID in the spaces above, and also in the
provided space at the top of every sheet.

CS421 Fall 2014 Midterm #1 NetID:

Question Points Bonus Points Score

1 18 0

2 10 0

3 16 0

4 22 0

5 14 0

6 20 0

7 0 10

Total: 100 10

Page 2

CS421 Fall 2014 Midterm #1 Name:

Problem 1. (18 points)
The following are 5 examples of potential sequences of OCaml declarations. Following
each is a series of statments. Fill in the circle next to each true statement.

(a) (3 points)
let x = 2;;

let y = 3;;

let f w z = w + x + z - 5;;

let a = f y;;

let x = 0;;

let b = f 5 3;;

© This fails to finish compiling with an error at the declaration of a
√

This compiles and assigns b a value of 5.

© This compiles and assigns b a value of 3.

(b) (6 points)
let result =

let test x = (print_string "a";

fun y -> (print_string "b"; x) + (print_string "c"; y))

in test (print_string "d"; 4)

(test (print_string "e"; 5) (print_string "f"; 6));;
√

This assigns result a value of 15.

© This prints abcdef.

© This prints abcdabcef.
√

This prints feacbdacb.

© This prints daeafbcbc

© This prints fedacbacb.

(c) (3 points)
let a = "hi";;

let f (x, y) = x ^ a ^ y;;

let b = 7;;

let a = b + 2;;

let g x = f "d";;

© This code will not compile to completion because of a type error in the
fourth line.

© This codes assigns g a function that takes a string and returns the result
of prepending "dhi" to it.

√
This will not compile to completion because of a type error in
the fifth line.

Page 3

CS421 Fall 2014 Midterm #1 NetID:

(d) (3 points)
let x = 3;;

let b = let x = 17 in x + 1;;

let e = x * 2;;

results with the bindings:

© b is bound to 4, e is bound to 6.
√

b is bound to 18, e is bound to 6.

© b is bound to 18, e is bound to 34.

(e) (3 points)
let f g = (print_string "a"; let x = g() in (print_string "b"; 2+x));;

f (fun () -> print_string "x"; 7);;

evaluates to:
√

axb- : int = 9

© abx- : int = 9

© xab- : int = 9

Page 4

CS421 Fall 2014 Midterm #1 Name:

Problem 2. (10 points)
Consider the following OCaml code. Assume that it is executed in an empty environment.
Following the code is a series of statments. Fill in the circle next to each true statement.

(* 1 *) let a = 2;;

(* 2 *) let b = 3;;

(* 3 *) let f x y = (a * x) + (b * y);;

(* 4 *) let b = 17;;

(* 5 *) let y = f 1;;
√

The environment after executing the declaration after (* 1 *) is

{a 7→ 2}

© The environment after executing through the declaration after (* 3 *) is

{a 7→ 2; b 7→ 3; f 7→ fun x -> fun y -> (a * x) + (b * y)}

© The environment after executing through the declaration after (* 3 *) is

{a 7→ 2; b 7→ 3; f 7→ fun x -> fun y -> (2 * x) + (3 * y)}
√

The environment after executing through the declaration after (* 3 *) is

{a 7→ 2; b 7→ 3; f 7→ 〈x→ fun y -> (a * x) + (b * y), {a 7→ 2; b 7→ 3}〉}

© The environment after executing through the declaration after (* 3 *) is

{a 7→ 2; b 7→ 3; f 7→ 〈x→ y→ (a * x) + (b * y), {a 7→ 2; b 7→ 3}〉}

© The environment after executing through the declaration after (* 4 *) is

{a 7→ 2; b 7→ 3; f 7→ 〈x→ fun y -> (a * x) + (b * y), {a 7→ 2; b 7→ 3}〉; b 7→ 17}

© The environment after executing through the declaration after (* 4 *) is

{a 7→ 2; f 7→ fun x -> fun y -> (2 * x) + (3 * y); b 7→ 17}
√

The environment after executing through the declaration after (* 4 *) is

{a 7→ 2; b 7→ 17; f 7→ 〈x→ fun y -> (a * x) + (b * y), {a 7→ 2; b 7→ 3}〉}
√

The value assigned to y at the end is

〈y→ (a * x) + (b * y), {a 7→ 2; b 7→ 3; x 7→ 1}〉

© The value assigned to y at the end is

〈y→ (2 * x) + (3 * y), {a 7→ 2; b 7→ 3; x 7→ 1}〉

Page 5

CS421 Fall 2014 Midterm #1 NetID:

Problem 3. (16 points)

(a) (8 points) Write a function sum even squares: int list -> int that returns
the sum of the square of each even number in a list of numbers. If the list contains
no even numbers, it should return 0. The only form of recursion you are allowed
to use is tail recursion and you may not use any library functions (including @).
You may use mod to test if a number is even.

let rec sum_even_squares l = . . . ;;

val sum_even_squares : int list -> int = <fun>

sum_even_squares [5;2;6;17];;

- : int = 40

Solution:

let sum_even_squares l =

let rec sum_even_squares_aux l acc =

match l with

| [] -> acc

| x::xs ->

if x mod 2 = 0 then

sum_even_squares_aux xs (x * x + acc)

else

sum_even_squares_aux xs acc

in sum_even_squares_aux l 0

Page 6

CS421 Fall 2014 Midterm #1 Name:

(b) (8 points) Write a function sum even squares op : int -> int -> int and a
value sum even squares base : int such that (List.fold left sum even squares op

sum even squares base) : int list -> int computes the same function as
sum even squares: int list -> int.

The type of List.fold left is (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a.

• let sum even squares op =

Solution:

fun s e -> if e mod 2 = 0 then e * e + s else s

• let sum even squares base =

Solution:

0

Page 7

CS421 Fall 2014 Midterm #1 NetID:

Problem 4. (22 points)
Below is a list of possible partial or total results for the following evaluation of code in an
environment. Please fill in all circles where the entry is equal to the given evalution via
a sequence of rewriting steps. You are not restricted to equality due to a single step
of evalution, but may use as many steps, and in whatever order, you deem appropriate.
You may wish to refer to the rewrite rules for evaluaiton on the last page.

Eval(square sum x y, {x 7→ 3; y 7→ 5; square sum 7→ 〈a→ fun b -> a * a + b * b, { }〉}) =

For compactness of typesetting, we will define

ρ0 = {x 7→ 3; y 7→ 5; square sum 7→ 〈a→ fun b -> a * a + b * b, { }〉}

© Eval(app(〈a→ b→ a * a + b * b, { }〉, 3, 5), ρ0)

© Eval(app(〈a→ fun b -> a * a + b * b, { }〉, 3, 5), ρ0)

√
Eval(app(Eval(square sum x, ρ0), Eval(y, ρ0)), ρ0)

√
Eval(app(Eval(square sum x, ρ0), 5), ρ0)

√
Eval(app(Eval(square sum x, ρ0), ρ0(y)), ρ0)

√
Eval(app(Eval(app(Eval(square sum, ρ0), 3), ρ0), 5), ρ0)

√
Eval(app(Eval(app(〈a→ fun b -> a * a + b * b, { }〉, 3), ρ0), 5), ρ0)

√
Eval(app(Eval(app(〈a→ fun b -> a * a + b * b, { }〉, 3), ρ0), 5), ρ0)

© Eval(a * a + b * b, {a 7→ 3; b 7→ 5}+ ρ0)

√
Eval(a * a + b * b, {a 7→ 3; b 7→ 5})

√
34

Page 8

CS421 Fall 2014 Midterm #1 Name:

Problem 5. (14 points)
Consider the following OCaml function:

let rec twist x = if x < 1 then 0 else x - twist (x - 1)

val twist : int -> int = <fun>

(a) (4 points) Write the functions leqk : ’a -> ’a -> (’a -> ’b) -> ’b (this should
have been leqk : ’a -> ’a -> (bool -> ’b) -> ’b) and subk : int -> int

-> (int -> ’a) -> ’a that are the CSP transformation of less than (<) and sub-
traction (-).

Solution:

let leqk x y k = k (x < y);;

let subk x y k = k (x - y);;

(b) (10 points) Write the function twistk : int -> (int -> ’a) -> ’a that is the
CPS transformation of the above code. Be careful to take note of the type of the
function twistk, and its arguments. You should use leqk and subk that you defined
above.

Solution:

let rec twistk x k =

leqk x 1

(fun b ->

if b then k 0

else subk x 1

(fun r -> twistk r

(fun t -> subk x t k)))

Page 9

CS421 Fall 2014 Midterm #1 NetID:

Workspace

Page 10

CS421 Fall 2014 Midterm #1 Name:

Problem 6. (20 points)
We can describe the Abstract Syntax Trees for an abbreviated portion of PicoML
expressions by the following data type:

type exp =

| VarExp of string (* variables *)

| IfExp of exp * exp * exp (* if exp1 then exp2 else exp3 *)

| AppExp of exp * exp (* exp1 exp2 *)

| FunExp of string * exp (* fun x -> exp1 *)

Write a function occurs: string -> exp -> bool that returns true if the string
occurs anywhere in the exp data structure.

let rec occurs x e = . . .

val occurs : string -> exp -> bool = <fun>

occurs "a" (IfExp ((VarExp "b"), AppExp(VarExp "a", VarExp "c"), FunExp("a", VarExp "b")));;

- : bool = true

Solution:

let rec occurs x e =

match e with VarExp y -> x = y

| IfExp (b, c, d) -> occurs x b || occurs x c || occurs x d

| AppExp (f, a) -> occurs x f || occurs x a

| FunExp (y, b) -> (x = y) || occurs x b

Page 11

CS421 Fall 2014 Midterm #1 NetID:

Bonus Problem 7. (10 points)

(a) (4 points (bonus)) Create a type of ifb list that can contains any mix of integers,
floats and booleans. Your data type should exactly model sequences, possibly empty,
of int, float and bool. You may not use the existing type of lists in OCaml in
your type.

Solution:

type ifb_list =

| Nil

| Int_cons of int * ifb_list

| Float_cons of float * ifb_list

| Bool_cons of bool * ifb_list;;

(b) (2 points (bonus)) Represent the mixed list [true; 5; 3.4; 6]

Solution:

Bool_cons(true,Int_cons(5,Float_cons(3.4,Int_cons(6,Nil))))

(c) (4 points (bonus)) Write a function val shift : ifb list -> int list * float

list * bool list = <fun> that puts the elements in order into the single typed
lists of their own type.

Solution:

let rec shift mlist =

match mlist with Nil -> ([],[],[])

| Int_cons (n,rest) ->

let (il,fl,bl) = shift rest in ((n::il),fl,bl)

| Float_cons (f,rest) ->

let (il,fl,bl) = shift rest in (il,(f::fl),bl)

| Bool_cons (b,rest) ->

let (il,fl,bl) = shift rest in (il,fl,(b::bl))

Page 12

CS421 Fall 2014 Midterm #1 Name:

Workspace

Page 13

CS421 Fall 2014 Midterm #1 NetID:

Scratch Space

Page 14

CS421 Fall 2014 Midterm #1 Name:

Workspace

Page 15

CS421 Fall 2014 Midterm #1 NetID:

A Eval

Eval(c, ρ) = c if c is a constant
Eval(v, ρ) = ρ(v) if v is a variable
Eval(e1 ⊕ e2, ρ) = (Eval(e1, ρ))⊕ (Eval(e2, ρ)) ⊕ a primitive operation
Eval(fun (x1, . . . , xn) -> body, ρ) = 〈(x1, . . . , xn)→ body, ρ〉
Eval(let x = e1 in e2, ρ) = Eval(e2, {x 7→ Eval(e1, ρ)}+ ρ)
Eval(f e, ρ) = Eval(app(Eval(f, ρ), Eval(e, ρ)), ρ)
Eval(app(〈(x1, . . . , xn)→ body, ρ1〉, (e1, . . . , en)), ρ2) = Eval(body, {x1 7→ e1, . . . , xn 7→ en}+ ρ1)

Page 16

