HW 2 Solution

CS 421 – Fall 2012 Revision 1.0

Assigned September 11, 2012 **Due** September 18, 2012, 11:59 pm **Extension** 48 hours (20% penalty)

1 Change Log

1.0 Initial Release.

2 Solutions

1. (10 pts) Below is a fragment of OCaml code, with various program points indicated by numbers with comments. (code and solution on next page)

For each of program points 1, 2, and 3, please describe the environment in effect after evaluation has reached that point. Finally, show step by step how the application of $f_z y$ would be evaluated. You may assume that the evaluation begins in an empty environment, and that the environment is cumulative thereafter. The program points are supposed to indicate points at which all complete preceding declarations (including local ones) have been fully evaluated.

Solution:

let $f_z x = if plus_x x < z$ then $sub_z x$ else $plus_x z$;

$$\begin{array}{ll} \rho_3 &=& \{\mathrm{f.z} \mapsto c_f\} + \rho_2 \\ &=& \{\mathrm{f.z} \mapsto c_f, \; \mathrm{sub.z} \mapsto c_{sub}, \; y \mapsto -5\} + \rho_1 \\ &=& \{\mathrm{x} \mapsto 5, \; \mathrm{plus.x} \mapsto c_{plus}, \; \mathrm{y} \mapsto -5, \; \mathrm{z} \mapsto 8, \; \mathrm{sub.z} \mapsto c_{sub}, \; \mathrm{f.z} \mapsto c_f\} \\ &\quad \mathrm{where} \; c_{plus} = <\mathrm{y} \to \mathrm{x} + \mathrm{y}, \; \{\mathrm{x} \mapsto 5\} > \\ &\quad \mathrm{and} \; c_{sub} = <\mathrm{x} \to \mathrm{y} - \mathrm{z}, \rho_1 > \\ &\quad \mathrm{and} \; c_f = <\mathrm{x} \to \mathrm{if} \; \mathrm{plus.x} \; \mathrm{x} < \mathrm{z} \; \mathrm{then} \; \mathrm{sub.z} \; \mathrm{x} \; \mathrm{else} \; \mathrm{plus.x} \; \mathrm{z}, \rho_2 > \end{array}$$

f_z y;;

Eval (f_z y,
$$\{x \mapsto 5$$
, plus_x $\mapsto c_{plus}$, y \mapsto -5, z \mapsto 8, sub_z $\mapsto c_{sub}$, f_z $\mapsto c_f\}$)

$$\Rightarrow$$
 Eval (f_z (-5), {x \mapsto 5, plus_x \mapsto c_{plus}, y \mapsto -5, z \mapsto 8, sub_z \mapsto c_{sub}, f_z \mapsto c_f})

$$\Rightarrow$$
 Eval (app $<$ x \rightarrow if plus_x x $<$ z then sub_z x else plus_x z, $\rho_2 >$ (-5), $\{$ x \mapsto 5, plus_x \mapsto c_{plus} , y \mapsto -5, z \mapsto 8, sub_z \mapsto c_{sub} , f_z \mapsto c_f $\}$)

$$\Rightarrow$$
 Eval (if plus_x x < z then sub_z x else plus_x z,{x \mapsto (-5)}+ ρ_2)

$$\Rightarrow$$
 Eval (if plus_x x < 8 then sub_z x else plus_x z,{x \mapsto (-5)}+ ρ_2)

$$\Rightarrow$$
 Eval (if plus_x (-5) < 8 then sub_z x else plus_x z,{x \mapsto (-5)}+ ρ_2)

$$\Rightarrow$$
 Eval (if (app $\langle y \rightarrow x+y, \{x \mapsto 5\} \rangle$ (-5)) $\langle 8 \text{ then sub_z } x \text{ else plus_x } z, \{x \mapsto (-5)\} + \rho_2)$

⇒ Eval (if (Eval(x+y,
$$\{y \mapsto (-5)\} + \{x \mapsto 5\} > (-5))$$
) < 8 then sub_z x else plus_x z, $\{x \mapsto (-5)\} + \rho_2$)

$$\Rightarrow$$
 Eval (if (Eval(x+(-5), {y \mapsto (-5), x \mapsto 5}> (-5))) < 8 then sub_z x else plus_x z,{x \mapsto (-5)}+ ρ_2)

$$\Rightarrow$$
 Eval (if (Eval(5+(-5), $\{y \mapsto (-5), x \mapsto 5\} > (-5))) < 8$ then sub_z x else plus_x z, $\{x \mapsto (-5)\} + \rho_2$)

$$\Rightarrow$$
 Eval (if $0 < 8$ then sub_z x else plus_x z, $\{x \mapsto (-5)\} + \rho_2$)

$$\Rightarrow$$
 Eval (if true then sub_z x else plus_x z, $\{x \mapsto (-5)\}+\rho_2$)

$$\Rightarrow$$
 Eval (sub_z x {x \mapsto (-5)}+ ρ_2)

$$\Rightarrow$$
 Eval (sub_z (-5),{x \mapsto -5, plus_x \mapsto c_{plus} , y \mapsto -5, z \mapsto 8, sub_z \mapsto c_{sub} }) where c_{sub} =\mapsto y-z, ρ_1 >

$$\Rightarrow$$
 Eval (app $\langle x \rightarrow y$ -z, $\rho_1 \rangle$ (-5), $\{x \mapsto$ -5, plus_x $\mapsto c_{plus}$, $y \mapsto$ -5, $z \mapsto$ 8, sub_z $\mapsto c_{sub}\}$) where $\rho_1 = \{x \mapsto 5, \text{plus}_x \mapsto c_{plus}, y \mapsto 3, z \mapsto 8\}$

$$\Rightarrow$$
 Eval (y-z,{x \mapsto -5}} + {x \mapsto 5, plus_x \mapsto c_{plus}, y \mapsto 3, z \mapsto 8} where c_{plus}=\mapsto x+y, {x \mapsto 5}>)

$$\Rightarrow$$
 Eval (y-8, $\{x \mapsto -5, \text{plus}_x \mapsto c_{plus}, y \mapsto 3, z \mapsto 8\}$ where $c_{plus} = \langle y \mapsto x + y, \{x \mapsto 5\} \rangle = -5$

$$\Rightarrow$$
 Eval (3-8,{x \mapsto -5, plus_x \mapsto c_{plus} , y \mapsto 3, z \mapsto 8} where c_{plus} = \langle y \mapsto x+y, {x \mapsto 5} \rangle) = -5