
Proof�Carrying Code

George C� Necula

School of Computer Science

Carnegie Mellon University

Pittsburgh� Pennsylvania ����������

necula�cs�cmu�edu

Abstract

This paper describes proof�carrying code �PCC�� a
mechanism by which a host system can determine with
certainty that it is safe to execute a program supplied
�possibly in binary form� by an untrusted source� For
this to be possible� the untrusted code producer must
supply with the code a safety proof that attests to the
code�s adherence to a previously de�ned safety policy�
The host can then easily and quickly validate the proof
without using cryptography and without consulting any
external agents�

In order to gain preliminary experience with PCC�
we have performed several case studies� We show in this
paper how proof�carrying code might be used to develop
safe assembly�language extensions of ML programs� In
the context of this case study� we present and prove
the adequacy of concrete representations for the safety
policy� the safety proofs� and the proof validation� Fi�
nally� we brie�y discuss how we use proof�carrying code
to develop network packet �lters that are faster than
similar �lters developed using other techniques and are
formally guaranteed to be safe with respect to a given
operating system safety policy�

� Introduction

High�level programming languages are designed and im�
plemented with the assumption of a closed world� Tak�

This research was sponsored in part by the Advanced Research

Projects Agency CSTO under the title �The Fox Project� Advanced

Languages for Systems Software�� ARPA Order No� C���� issued by

ESC�ENS under Contract No� F�	
��
	�
C
����� The views and

conclusions contained in this document are those of the authors and

should not be interpreted as representing the o�cial policies� either

expressed or implied� of the Advanced Research Projects Agency or

the U�S� Government�

To appear in the Proceedings of the ��th Annual ACM

SIGPLAN�SIGACT Symposium on Principles of Pro�

gramming Languages �POPL ����� Paris� France� Jan�

uary 	
�	�� 	����

ing ML as an example� the programmer must normally
assume that all components of the program are written
in ML in order to establish that the program will have
the properties conferred by type safety� In practice�
however� programs often have some components writ�
ten in ML and others in a di�erent language �perhaps
C or even assembly language�� In such situations� we
lose the guarantees provided by the design of ML unless
extremely expensive mechanisms �such as sockets and
processes� are employed� In implementation terms� it is
extremely di	cult to determine whether the invariants
of the ML heap will be respected by the foreign code�
and so we must use some kind of expensive �rewall or
simply live dangerously�

This problem is exacerbated in the realms of dis�
tributed and web computing� particularly when mobile
code is allowed� In this kind of situation� agent A on one
part of the network might write a component of the soft�
ware system in ML� compile it to native machine code�
and then transmit it to an agent B on another node for
execution� How does agent A convince agent B that the
native code has the type�safety properties shared by all
ML programs� and furthermore that it respects the rep�
resentation invariants chosen for maintaining the state
of B�s heap

There are many other manifestations of the same
problem� For example� in the realm of operating sys�
tems� it is often pro�table to allow application programs
to run within the same address space as the operating�
system kernel� Once again� the problem is how can
the kernel know that the inherently untrusted applica�
tion code respects the kernel�s internal invariants� The
problem here seems even worse in practice� because the
kinds of properties required of the application code are
di	cult in the sense that standard type systems cannot
express them easily� For example� in the SPIN ker�
nel ��
� there are often basic requirements about the
proper use of synchronization locks that would be hard�
if not impossible� to express in the ML or Modula��
type systems�

In the situations described above� a code consumer
must somehow become convinced that the code sup�
plied by an untrusted code producer has some �previ�
ously agreed upon� set of properties� Sometimes this
is referred to as establishing �trust� between the con�
sumer and producer� Cryptography can be used to en�
sure that the code was produced by a trusted person
or compiler ��� ��
� This scheme is weak because of its
dependency on personal authority�even trusted per�
sons� or compilers written by them� can make errors
occasionally or even act maliciously�

In this paper� we present proof�carrying code �PCC
for short�� which is a mechanism for dealing with these
problems� With proof�carrying code� the code producer
is required to create a safety proof that attests to the
fact that the code respects a formally de�ned safety
policy� Then� the code consumer is able to use a simple
and fast proof validator to check� with certainty� that
the proof is valid and hence the foreign code is safe to
execute�

There is an analogy between safety proofs and types�
The analogy carries over to proof validation and type
checking� With this analogy in mind we note that most
attempts to tamper with either the code or the proof
result in a validation error� In the few cases when the
code and the proof are modi�ed such that validation
still succeeds� the new code is also safe� This is why
we consider proof�carrying code to be intrinsically safe�
without need for external authentication or cryptogra�
phy�

In a previous paper ���
� we have already shown how
proof�carrying code can be used to implement safe and
very fast network packet �lters� In this paper� we pro�
vide more of the necessary technical details and theo�
rems that establish the soundness and adequacy of our
certi�cation scheme� as well as present a second case
study involving the extension of a run�time system for
an ML implementation� We begin with an overview of
the stages involved in the creation and use of proof�
carrying code� Then� we present the case study of ex�
tending a simpli�ed form of the run�time system of the
TIL compiler ���
 for Standard ML� In doing so� we
show a sample formal system for PCC and state the
necessary theorems for soundness and adequacy of the
methodology� We continue with a brief description of
the network packet �lter example from our previous pa�
per� After these case studies� we discuss some of the
problems involved in generating the proofs� as well as
some other engineering matters� Finally� we summarize
what has been accomplished so far and where we see
the most interesting directions for further research�

� Proof�Carrying Code

Figure � shows the typical process of generating and us�
ing proof�carrying code� The whole process is centered
around the safety policy� which is de�ned and made
public by the code consumer� Through this policy� the
code consumer speci�es precisely under what conditions
it considers the execution of a foreign program to be
safe�

CPU

SAFETY
RULES

INTERFACE

PROOF

ENABLE

SAFETY POLICY

CODE CONSUMER

CODE PRODUCER
USER PROCESS

RUNTIME SYSTEM
OS KERNEL

SOURCE PROGRAM

CERTIFICATION

COMPILATION
&

CODE

SAFETY
BINARY

NATIVE

PCC

PROOF
VALIDATION

Figure �� Overview of Proof�Carrying Code�

The safety policy consists of two main components�
the safety rules and the interface� The safety rules
describe all authorized operations and their associated
safety preconditions� The interface describes the calling
conventions between the code consumer and the foreign
program� that is the invariants holding when the con�
sumer invokes the foreign code and the invariants that
the foreign code must establish before calling functions
provided by the consumer� or before returning to the
consumer� In the analogy with types� the safety rules
are the typing rules and the interface is the signature
against which the foreign module is compiled�

The life of a PCC binary spans three stages� In
the �rst stage�called certi�cation�the code producer
compiles �or assembles� and generates a proof that a
source program adheres to the safety policy� In the gen�
eral case� certi�cation is essentially a form of program
veri�cation with respect to the speci�cation described
by the safety policy� In addition� a proof of successful
veri�cation is produced and suitably encoded to yield
the safety proof� which together with the native code

�

component forms the PCC binary� The code producer
can store the resulting PCC binary for future use� or
can deliver it to code consumers for execution�

In the second stage�called validation�a code con�
sumer validates the proof part of a PCC binary pre�
sented for execution and loads the native code compo�
nent for execution� The validation is quick and driven
by a straightforward algorithm� It is only the imple�
mentation of this simple algorithm that the consumer
must trust in addition to the soundness of its safety
policy�

The existence of the proof allows for the veri�cation
process to be performed o��line and only once for a
given program� independently of the number of times
it is executed� This has important engineering advan�
tages� especially in cases where veri�cation is hard and
time consuming or requires user interaction� In such
cases it would be undesirable to perform veri�cation at
the consumer site�

Finally� in the last stage of the process the code
consumer executes the machine�code program possibly
many times� This stage can proceed without performing
additional run�time checks because the previous valida�
tion stage ensures that the code obeys the safety policy�

This completes our overview of the general proof�
carrying code technique� Before we can attempt a prac�
tical implementation of PCC� we must decide on con�
crete representations for the safety policy� safety proofs
and their validation procedure� We present next a sum�
mary of our current choices and continue in the next
section with the details and formal adequacy theorems�

In our current experiments we use extensions of �rst�
order predicate logic as the basis for formalizing the
safety policy� The extensions are predicates denoting
application�speci�c safety requirements� together with
their derivation rules� In this setup� the interface part
of the safety policy consists of a set of precondition
and postcondition predicates for the foreign function
and the functions exported by the code consumer� The
safety rules are expressed as a Floyd�style veri�cation
condition generator� which given the program and a set
of preconditions and postconditions produces a veri��
cation condition predicate �VC� in our logic� The VC
has the property that if it can be proved using the proof
rules in our logic� then the program satis�es the safety
invariants� In this case the safety proof is an appro�
priate encoding of a proof of the VC predicate� proof
is reduced to theorem proving in our logic and valida�
tion to proof checking� For the particular safety policy
of the extensions to the TIL run�time system� we show
that the above choices are adequate�

� Case Study� Safe Extensions of the TIL

Run�Time System

The practice of software development in languages such
as ML and Haskell often involves extending the run�
time system� usually by writing C code� to implement
new primitive types and operations or functionality that
is not easily programmed in the high�level language�
This raises the question of how to ensure that the for�
eign code respects the basic assumptions of the run�time
system� Even without considering user�extensions� the
run�time systems of high�level languages usually include
a sizeable part written in unsafe languages such as C or
even assembly language� The mechanism that allows an
untrusted user to safely extend the run�time can also be
used by a small kernel of the run�time system to boot�
strap the rest� increasing the level of con�dence in the
system�

We propose the use of proof�carrying code to allow
arbitrary untrusted users to safely link foreign functions
to a safe programming language run�time system� For
this to be possible the compiler designer de�nes the
safety policy� which is basically a formal description of
the data�representation invariants to be preserved and
calling conventions to be obeyed by foreign functions�
Then� the user produces and attaches to the foreign
code a safety proof attesting to the preservation of the
invariants�

To make the presentation more concrete we show
in detail how we use PCC to develop safe DEC Alpha
assembly�language ���
 extensions to a simpli�ed ver�
sion of the run�time system of the TIL ���
 compiler
for Standard ML ��
� For the purposes of this paper� we
consider here only a small example and make some sim�
plifying assumptions about TIL� �These are described
later�� Scaling the technique to the entire Standard ML
language is subject of current research�

datatype T � Int of int � Pair of int � int

fun sum �l � T list� �

let

fun foldr f nil a � a

� foldr f �h��t� a � foldr f t �f�a� h��

in

foldr �fn �acc� Int i� �� acc � i

� �acc� Pair �i� j�� �� acc � i � j�

l 	

end

Figure �� The Standard ML source program�

Consider the Standard ML program fragment shown

�

in Figure �� This program de�nes a union type T and
a function sum that adds all the integers in a T list�
The plan for the rest of this section is to de�ne a safety
policy for extensions to the TIL run�time system and
then prove the type safety of a hand�optimized assembly
language version of the sum function�

Establishing a Safety Policy

The �rst order of business is to de�ne the safety pol�
icy for the TIL run�time system in the presence of for�
eign functions� This is the job of the compiler de�
signer� or a trusted person that is familiar with the data�
representation conventions and basic invariants main�
tained by the TIL compiler and run�time system�

The safety policy in our case requires that foreign
code maintains the data�representation invariants cho�
sen by the TIL compiler� Data representation in TIL
is type directed and the types involved in our example
are the following�

� ��� int j �� � �� j �� � �� j � list

For convenience we use T as an abbreviation for the
type int��int�int�� For this subset of ML types� the
TIL data�representation rules are as follows� an inte�
ger value is represented as an untagged ���bit machine
word� a pair is represented as a pointer to a sequence of
two memory locations containing values of appropriate
types� a value of type ��� �� is represented as a pointer
to a pair of locations containing respectively the con�
structor value �� for injl and � for injr� and the value
carried by the constructor� the empty list is represented
as the value � and the non�empty list as a pointer to a
list cell� See Figure � for examples of TIL representa�
tions of several SML values�

The compiler designer describes formally the data�
representation strategy by means of a typing judgment�
m � e � � � where e is an expression and m is a mem�
ory state� The memory state is part of the judgment
because some of the types are represented as pointers�
which are only valid in certain states of the memory
�e�g�� after the underlying value has been allocated��
The sets of expressions and memory states for our ex�
ample� are de�ned as follows�

e ��� n j ri j sel�m� e� j e� � e�
m ��� rm j upd�m� e�� e��

where n is a ���bit integer literal� ri are the DEC Al�
pha machine registers� rm is a pseudo register holding
the state of memory during the computation� sel�m� e�
denotes the contents of the location e in memory state
m� and upd�m� e�� e�� denotes a memory state obtained
from the old statem after updating the location e� with

val r	 � int �

val r� � int � int � ���
�

val r� � T � Pair r�

val r
 � T � Int �

val r� � T list � �r
� r��

2

5

2 3

0

0

1

6

r

r

r

r

r

3

4

0

1

Figure �� Data Representation in TIL� Each box repre�
sents a machine word�

e�� To simplify the memory�safety aspect of the safety
policy� the compiler designer introduces an additional
type� called addr� This type is used for expressions
whose value is a memory address that can be safely
read�

Based on the known data�representation strategy
used by the TIL compiler� the compiler designer de�nes
the typing judgment by a set of inference rules� as shown
in Figure �� We only show the elimination rules for the
typing judgment because for the example at hand we
are not concerned with constructing values of non�base
types� Also� for the purpose of this paper we ignore the
over�ow semantics of addition in Standard ML�

There is more to the safety policy than just the typ�
ing rules presented so far� For illustration purposes� we
shall present the remaining mechanisms of the safety
policy in the context of a concrete example of a foreign
function�

The Foreign Function

In our experiment� the code producer writes a DEC Al�
pha assembly language implementation of the sum func�
tion� as shown in Figure �� This code assumes that reg�
ister r� contains the argument of type T list on entry
and the integer result on exit� The registers r�� r� and
r� are used as temporaries� The purpose of the INV in�
struction will be explained shortly� This code is written
to obey the TIL data�representation strategy� and it is
this fact that must be proved for the consumer�

Note that the above assembly�language program is
optimized by hand� One of our goals is to show that
proof�carrying code does not pose restrictions on using

�

m � e � �� � ��
m � e � addr � m � e� � � addr � m � sel�m� e� � �� � m � sel�m� e� �� � ��

m � e � �� � ��
m � e � addr � m � e� � � addr � sel�m� e� � � � m � sel�m� e� �� � �� � sel�m� e� �� � � m � sel�m� e� �� � ��

m � e � � list e �� �
m � e � addr � m � e� � � addr � m � sel�m� e� � � � m � sel�m� e� �� � � list

m � e� � int m � e� � int
m � e� � e� � int m � � � int

Figure �� The typing rules�

�r� is l
� sum � INV rm � r� � T list

�r� is acc
� MOV r�� � �Initialize acc
� L� INV rm � r� � T list � rm � r� � int

�Loop invariant
� BEQ r�� L�� �Is list empty

� LD r�� ��r�� �Load head
� LD r�� ��r�� �Load tail
� LD r�� ��r�� �Load constructor
� LD r�� ��r�� �Load data
� BEQ r�� L�� �Is an integer

� LD r�� ��r�� �Load i

�� LD r�� ��r�� �Load j

�� ADD r�� r�� r� �Add i and j

�� L�� ADD r�� r�� r� �Do the addition
�� BR L� �Loop
�� L�� MOV r�� r� �Copy result in r�
�� RET �Result is in r�

Figure �� DEC Alpha assembly language implementa�
tion of the sum function�

register allocation� scheduling or other low level opti�
mization techniques�

For the rest of this section we consider the foreign
program represented as a vector � of instructions� With
this convention a program point is an index in the vector
��

Computing the Veri�cation Condition

Our basic method to check compliance with the safety
rules is based on computing a Floyd�style veri�cation
condition ��
 for the foreign function� This is a predicate
in �rst�order logic with the property that its validity
with respect to the �rst�order logic rules and the typing

rules is a su	cient condition for ensuring compliance
with the safety policy� Both the code producer and
the code consumer compute the veri�cation condition�
the code producer for the purpose of proving it� and
the code consumer to ensure that the foreign code is
accompanied contains a valid proof of it�

To use a Floyd�style veri�cation condition generator�
all of the loop invariants must be given as well as the
interfaces for all functions being called� The invariant
associated with the loop starting at L� is

rm � r� � T list � rm � r� � int

and the interface for the function sum is given as a pre�
condition and a postcondition as shown below�

Pre � rm � r� � T list

Post � rm � r� � int

In general� the loop invariant for type�safety policies
is the conjunction of all typing predicates for the regis�
ters that are live at the invariant point� The interfaces
are derived similarly from the function types�

For �exibility� we allow invariants to be associated
with arbitrary points in the program� not necessarily
part of loops� These points are marked in the program
by INV pseudo instructions�� and their set is denoted
by Inv� For such a point i� we write Inv i to denote
the corresponding invariant� To simplify the presenta�
tion� we assume that the code consumer prepends the
instruction INV Pre to each untrusted program before
analyzing it� With this convention we have that � � Inv
and Inv� � Pre �

The veri�cation condition generator de�ned in Fig�
ure � computes a vector VC of predicates� one for each
instruction� The notation �e�ri
P stands for the predi�
cate obtained from P by substituting the expression e
for all occurrences of ri�

�In practice the invariants are kept separate from the code� allow

ing the code to be executed directly by the physical processor�

�

VC i �

���������
��������

�rs � op�rd
VC i��� if �i � ADD rs� op� rd

rm � rs � n � addr � �sel�rm� rs � n��rd
VC i��� if �i � LD rd� n�rs�

�rs � � � VC i�n��� � �rs �� � � VC i���� if �i � BEQ rs� n

Post � if �i � RET

I� if �i � INV I

Figure �� The veri�cation condition generator�

The VC function is well de�ned if every loop in the
program contains at least one invariant instruction� Our
current implementation requires that every backward�
branch target be an invariant instruction� In these con�
ditions the entire vector VC can be computed in one
pass through the program�

Based on the vector VC � we de�ne the veri�cation
condition for the entire program as follows�

VC ��� Inv �Post� � �ri�
�

i�Inv

Inv i � VC i��

For our example program� the VC predicate has two
conjuncts� one for the precondition and another for the
invariant associated with L�� The �rst conjunct cor�
responds to the control path from the function entry
point to the start of the loop� This conjunct says that
the loop invariant is established when the loop condi�
tional is �rst executed�

rm � r� � Foo list � � rm � r� � Foo list �
rm � � � int�

The second conjunct corresponds to the rest of the pro�
gram and says both that the the loop invariant is pre�
served around the loop and that it entails the post�
condition when the loop �nishes� This part of the VC
predicate is more complicated and we do not show it
here�

Soundness of VC�based Certi�cation

The VC predicate as de�ned above is proved by the
code producer and a proof of it constitutes the safety
proof� We discuss in this section the adequacy of using
the proof of the VC predicate as a safety proof� and we
defer to Sections � and � the more di	cult problem of
proof search�

We write � P when the predicate P can be proved
using the inference rules from Figure � and the proof
rules of �rst�order predicate logic� a few of which are
shown in Figure �� Note that the implication introduc�
tion rule is hypothetical in the assumption u and the �
introduction rule is schematic in v� These side condi�
tions must be satis�ed for a proof to be valid�

� P � R
� P � R

and i

� P
u

���u

� R
� P � R

impl iu

v

���v

�
v�x�P

� �x � P
all iv

Figure �� Fragment of the �rst�order predicate logic
proof rules�

In Appendix A we prove the soundness of using the
proof of the VC predicate as the basis for safety certi�
�cation� We �rst formalize the execution of assembly�
language programs on the DEC Alpha processor using
an abstract machine� Then� we show that any program
with a valid veri�cation condition� when executed on
the abstract machine starting in a state that satis�es
the precondition� will reference only memory locations
that are de�ned valid by the typing rules� Furthermore�
if the program terminates then the �nal state satis�es
the postcondition� This is stated here informally as
Theorem ��� and then formalized in Appendix A�

Theorem ��� For any program �� set of invariants
Inv and postcondition Post such that �� � INV Pre�
if � VC ��� Inv �Post� and the initial state satis�es the
precondition Pre� then the program reads only from
valid memory locations as they are de�ned by the typing
rules� and if it terminates� it does so in a state satisfying
the postcondition�

The proof of soundness of VC�based certi�cation
from Appendix A is much simpler than other correct�
ness arguments for Floyd�s VC generators� mainly be�
cause of the more precise de�nition of programs� in�
variants and program points for assembly language pro�
grams than for �owcharts�

Safety Proofs

We argued in the previous section and we prove in Ap�
pendix A that a proof of validity of the VC predicate
is su	cient to ensure compliance with the safety policy�

�

The safety proof must therefore be a suitable encoding
of a derivation � VC ��� Inv �Post��

We use a two�stage encoding of derivations� In the
�rst stage we represent predicates and proofs as objects
in the Edinburgh Logical Framework �also referred to
as LF� ��
� In the second stage� we encode LF objects in
a compact binary format� suitable for storage or trans�
mission to code consumers� We shall discuss here in
detail only the LF representation�

LF has been designed as a meta language for high�
level speci�cation of logics and provides natural support
for the management of binding operators and hypothet�
ical and schematic judgments� The LF type theory is a
language with entities of three levels� objects� types and
kinds� The abstract syntax of these entities is shown
below�

Kinds K ��� Type j �x �A�K
Types A ��� a j A M j �x �A��A�

Objects M ��� c j x j M� M� j �x �A�M

We represent our logic in LF by means of a signature
L that assigns types to a set of constants describing
the syntax of expressions and predicates� and the proof
rules of our logic� In LF� judgments are represented as
types and judgment derivations as objects whose type
is the representation of the judgments they prove� Type
checking in the LF type discipline can then be used to
check logic proofs�

We start now to present the signature L� First� we
de�ne the LF types exp of expressions� pred of predi�
cates and tp of ML types� All of these are atomic LF
types�

exp � Type

pred � Type

tp � Type

For each expression and predicate constructor we de�ne
an LF constant as shown below�

� � exp

� � exp� exp� exp

� � exp� exp� exp

true � pred

and � pred�pred�pred

impl � pred�pred�pred

all � �exp�pred��pred

hastype � exp�exp�tp� pred

Note that binding predicate constructors are repre�
sented as higher�order LF constants� e�ectively shifting
the machinery related to bound variables and substitu�
tion from our logic to LF� This relies on representing
variables as LF variables�

The LF representation function p	q is inductively de�
�ned on the structure of expressions and predicates� A

few de�nition cases are shown below�

pP � Rq � and pPq pRq
p�x�Pq � all ��x �exp�pPq�

pxq � x

For the representation of derivations we de�ne a type
family indexed by representation of predicates�

pf � pred� Type

Following the model of expressions and predicates we
de�ne a constant for each proof schema� A few of these
constants are shown below�

and i � �p �pred��r �pred�
pf p� pf r � pf �and p r�

impl i � �p �pred��r �pred�
�pf p� pf r�� pf �impl p r�

all i � �p �exp� pred�
��v �exp�pf �p v��� pf �all p�

We then extend the representation function p	q to
derivations� When doing so care must be taken with
hypothetical and schematic judgments� such as the im�
plication introduction and the universal quanti�cation
introduction rules shown below� The representation of
the conjunction introduction is typical for most other
rules�

p

D�

� P�

D�

� P�
� P� � P�

q

� and i pP�q pP�q pD�q pD�q

p

� P�
u

��� Du

� P�
� P� � P�

u

q

� impl i pP�q pP�q ��u �pf pP�q�pDuq�

p

Dv

� �v�x
Px

� �x�Px

q

� all i ��x �exp�pPxq� ��v �exp�pDvq�

The implication introduction rule introduces the hy�
pothesis labelled u for the purpose of deriving P��
Checking an instance of this rule schema involves verify�
ing that it discharges properly the hypothesis u� Equiv�
alently� the derivation Du must be hypothetical in u�
This is expressed naturally in LF by representing the
hypothesis as a variable bound in Du� Finally� the LF
representation of our logic contains also the representa�
tion of the application�speci�c proof rules from Figure ��
Their representation is straightforward because they do
not involve hypothetical judgments� As an example we

�

show below the LF representation of the typing rules
for lists�

tp list � �m �exp��e �exp��t �tp�
pf �hastypem e �list t��� pf �neq e ���
pf �and �and �hastypem e addr�

�hastypem �sel m e� t��
�and �hastypem �� e �� addr�

�hastypem �sel m �� e ��� �list t����

The purpose of the LF representation is to use the
LF type�checking algorithm for checking the validity of
proofs� This has the advantage that the code consumer
need only trust one implementation of proof check�
ing� Other logics can be encoded and their derivations
checked by the same type checker just by changing the
signature� Furthermore� the LF typing rules are so sim�
ple that a naive implementation takes only a couple of
pages of code� This is important because it minimizes
the concern that the type checker must be trusted�

We do not show here the typing rules for full LF�
Instead we de�ne in Appendix B a fragment of LF that
is expressive enough to encode �rst�order and higher�
order logics but is strictly simpler and less expressive
than full LF� For this fragment� called LF�� we show
the typing rules and the adequacy of the encoding of
predicates and derivations� The statement of the ade�
quacy theorem is shown below� The LF� typing judg�
ment �

L
M �c A says that the objectM is canonical of

type A with respect to the type assignment and the
signature L�

Theorem ��� �Adequacy for �rst�order logic�
There is a bijection p	q between derivations D �� � P
with parameters vi �i � �� � � � � n� and from hypotheses
uj �� � Pj �j � �� � � � �m� and canonical LF objects pDq

such that

vi �a exp� uj �a pf pPjq �L pDq �c pf pPq

The following corollary of the adequacy theorem
states that LF type checking is a su	cient procedure
for checking safety proofs�

Corollary ��� If P is a closed predicate and M is a
canonical LF object such that 	 �

L
M �LF pf pPq� then

there exists a derivation of D �� � P � that is P is valid�
Furthermore� M � pDq�

A similar theorem is proved by Harper� Honsell and
Plotkin ��
 for canonical forms in full LF� In LF� the
proofs are somewhat simpler because of the syntax di�
rected form of typing judgments and canonical forms�
A practical advantage of LF� over full LF is that de��
nitional equality� responsible for the exponential worst
case complexity of LF type checking� is replaced with a

localized syntax�directed normalization judgment� For
the particular signature L� normalization is only in�
volved in checking instances of the universal quanti��
cation elimination rule schema�

Quantitative Results

One motivation for our experiments was to measure the
size of safety proofs and the time it takes to validate
them for a few simple examples� The safety proof con�
tains the LF representations of the invariants�less the
precondition� which is supplied by the code producer�
and the proof of the VC predicate� All these LF objects
are encoded in a portable and compact binary format�

Recall that the PCC binary contains also the native
code� For the example presented in this section� the
size of the entire PCC binary is ��� bytes� Of these�
the safety proof occupies ��� bytes and the code ��
bytes� The rest ���� bytes� is a �xed�size overhead�

With our implementation of the LF� type�checking
algorithm� validating the proof for our example takes
���ms on a DEC Alpha workstation running at ���MHz�
This time is signi�cantly less than it would take a
trusted optimizing compiler to generate the same safe
extension by compilation of SML source�

� Case Study� Safe Packet Filters

In another case study� we used proof�carrying code to
implement a collection of network packet �lters� The
details of this experiment are described elsewhere ���
�
and so here we give only a brief summary of the exper�
iment and our results�

Many modern operating systems provide a facility
for allowing application programs to receive packets di�
rectly from the network device� Typically� an appli�
cation is not interested in receiving every packet from
the network� but only the small fraction that exhibit a
speci�c property �e�g�� an application might want only
TCP packets destined for a Telnet port�� In such cases�
it is highly pro�table to allow the application program
to specify a boolean function on network packets� and
then have this �lter run within the kernel�s address
space� The kernel can then avoid delivering uninterest�
ing packets to the application� thereby saving the cost
of many unnecessary context switches� Packet �lters
are supported by most of today�s workstation operat�
ing systems ��
�

The main technical problem is that application pro�
grams are inherently untrusted� and so the kernel must
employ some method for ensuring safety� One popular
solution� exempli�ed by the BSD Packet Filter architec�
ture �BPF� ��
� is to de�ne a safe programming language

�

for writing packet �lters� and then use an interpreter in
the kernel to execute them� In the BPF language� for
example� �lter programs are restricted to be loop�free�
and all references to memory are checked at run time
to be within the bounds of either the packet data or a
statically allocated scratch memory�

In our experiment� we were able to use PCC to de�
�ne the same safety policy as de�ned by BPF� and then
write a collection of typical packet �lters in hand�coded
DEC Alpha assembly language� �The VC generator and
the abstract machine we use are essentially the same as
those shown in Figures � and �� but with branches re�
stricted to be forward�only�� Since the packet �lters
are written in hand�tuned assembler instead of an in�
terpreted language� they are ten times faster than func�
tionally equivalent packet �lters written using BPF� two
times faster than packet �lters written in the safe subset
of Modula��� and ��� faster than �lters developed using
software fault isolation ���
� Furthermore� the proofs
are small� ranging from ��� to ��� bytes in size� and
the validation times are negligible� ranging from ���ms
to ���ms� Note that we use exactly the same implemen�
tation of LF type checking as the previous application�
with only the signature modi�ed�

� Generating Safety Proofs

The remaining aspect of our PCC experiment to be dis�
cussed is the generation of the safety proofs� There are
still many open questions about proof generation� such
as scalability to large programs� We currently obtain
the proofs by using a very simple theorem prover that
produces a witness for every successful proof� There are
other possible methods that are likely to work better�
especially for larger programs� We discuss some of these
in Section ��

For our experiments� we use the programming lan�
guage Elf ���
 to prove VC predicates and produce LF
representation of their proofs� Elf is a logic program�
ming language based on LF� A program in Elf is an LF
signature and execution in Elf is search for canonical
LF objects inhabiting an LF type in the context of a
signature� In our case the program is the signature L
and we are interested in �nding a closed object M of
type pf pVCq for some veri�cation condition VC � If
such an object is found� according to Corollary ���� it
constitutes the canonical LF representation of a proof
� VC � Incidentally� this is exactly the required safety
proof�

Proof search in Elf is performed in depth��rst fash�
ion� as in Prolog� With this operational view� the nat�
ural deduction style presentation of our logic is not ap�
propriate for proof search� because any of the elimina�

tion rules would lead to non�termination� Our solution
to this problem is based on the observation that all of
the VC predicates in our current experiments are ei�
ther �rst�order Horn clauses or �rst order hereditary
Harrop formulas� These fragments of �rst�order logic
admit a complete sequent�style proof system where the
declarative meaning of logical connectors coincides with
their search�related reading ��
� The resulting proofs
are called uniform� The LF representation of a uniform
proof system for our logic can then be used as a logic
program to perform proof search�

We represent in LF the uniform derivation rules for
our logic in a manner similar to the natural deduction
representation� We use this representation in Elf to per�
form a goal�directed search for a uniform derivation of
the validity of the VC predicate� We also represent
in LF the proof of soundness of uniform derivations
with respect to the natural deduction formulation of
our logic� We exploit the operational reading of this
soundness proof in Elf to convert the uniform deriva�
tion of the VC predicate to a natural deduction proof
of it�

Each of the LF signatures representing our logic� the
uniform proof derivations for it and the soundness of
uniform proofs� consist of about �� constant declara�
tions�

� Discussion and Future Work

For the type�safety example presented in this paper� we
were able to employ simple rules for �nding su	ciently
strong loop invariants and the interfaces for all func�
tions called� However� in the general case� this is a very
di	cult problem and the main factor that makes cer�
ti�cation hard� One engineering advantage of PCC in
this regard is that all of the hard work is done o��line�
by the code producer who can employ a variety of tools
including costly program analyses or even user interac�
tion�

Another factor that makes the problem simpler than
general program veri�cation is that the code producer
can allow the certi�cation process to alter the code� per�
haps by inserting run�time checks in strategic locations�
This would have the tendency to make it easier to gen�
erate the proof automatically� For example� if we insert
run�time bounds checks before some array operations
then it becomes easy to verify that no out�of�bounds
array accesses are performed�

Still� it seems unlikely that such a veri�cation�based
approach will scale up to programs of a more realis�
tic size� We believe that a more promising technique
for producing the proofs would be to rely on a com�
piler to prove that the target code preserves interesting

�

properties of the source program� such as termination�
lack of deadlock� or type safety� This would be gener�
ally achieved by instrumenting the compiler to generate
proofs of safety in parallel with code transformations�

Currently� we have very little experience with such
�certifying compilers�� We have implemented a com�
piler for a small type�safe imperative language with sum
and product types� The target language is similar to
the source language except that it has only products�
In target programs the sum�type values are represented
as pairs� in a manner similar to the TIL representa�
tion strategy� We employ typing rules similar to those
presented in this paper to prove type safety for the tar�
get program� We are able to implement the compiler
in such a way that the type�safety proof for the source
code is transformed into a proof in parallel with the
transformation of the code into the target language�

We are exploring the feasibility of extending a more
realistic compiler� such as TIL� to generate type�safety
proofs� TIL currently preserves the proof of type safety
through most of the high�level optimizations by means
of typed intermediate languages� To make TIL a cer�
tifying compiler� we would need to extend the safety
policy presented in this paper to the entire Standard
ML language� and then modify the compiler so that
it preserves the safety proof through all back�end op�
timizations and translations� While this seems quite
a daunting task� it is encouraging that code schedul�
ing and register allocation� when done correctly� do not
change the safety predicate� In fact� it may be a simple
correctness criterion for these optimizations that they
preserve any safety predicate that the code has initially�

Another aspect of our PCC experiments that de�
serves some discussion is the choice of the underlying
logic for the safety policy and the representation of
derivations� A somewhat delicate point is the choice of
axioms and proof rules for reasoning about arithmetic�
In our experiments� we have chosen the rules and ax�
ioms a bit haphazardly� extending the logic as the need
arose� While this approach might be workable in some
circumstances� widespread use of PCC for� say� safe ap�
plets would require that all proof validators adopt the
same logic� How to choose the right system may be a
di	cult task� though in practice this amounts to estab�
lishing a kind of standard basis library�

Beyond the matter of arithmetic� we plan to ex�
periment with logics that are more expressive than
�rst�order logic� such as linear logic or temporal logic�
Such logics can provide more expressive mechanisms for
de�ning practical safety policies� For example� linear
logic might be useful for expressing revocation and sin�
gle threading of capabilities� Temporal logic could be
used possibly to express fairness or lack of deadlock�
Also� higher�order logic could be the basis for reasoning

about code�generating code�
Working with more expressive logics might require

more meta�language machinery than provided by LF�
This is the case for linear logic� for example� Another
reason to experiment with other representation tech�
niques� is that there are no known decidable criteria for
ensuring that an LF signature is a proof of some the�
orem about a deductive system� If we could encode in
an easy�to�check representation theorems like �all type�
safe code is also memory safe�� then we would have a
mechanism by which untrusted users could safely de�ne
safety policies�

	 Conclusion

We have presented proof�carrying code� a mechanism
that allows a code consumer to interact safely with na�
tive code supplied by untrusted code producers� PCC
does not incur the run�time overhead of previous so�
lutions to this problem� Instead� the code producer is
required to generate a proof that attests to the code�s
safety properties� The kernel can easily check the proofs
for validity� after which it is absolutely certain that the
code respects the safety policy� Furthermore� PCC bi�
naries are completely tamper�proof� any attempt to al�
ter either the native code or proof in an PCC binary is
either detected or harmless with respect to the safety
policy�

The main contribution of the work presented in this
paper is the principle of staging program veri�cation
into certi�cation and proof validation� with the proof
acting as a witness that the certi�cation was performed
correctly� This staging has great engineering advan�
tages� all based on the intuition that proof checking is
believed to be much easier than proof generation�

Application�speci�c proving strategies�goal directed
search� interactive theorem proving or just brute�force
search guided by heuristics�and their associated com�
plexity and computational costs are moved o��line to
the certi�cation stage� In the validation stage� we only
need a simple and reliable proof checker which in many
cases is inexpensive enough to be used in performance
critical paths� Moreover� the same proof checker covers
many practical applications� which increases the relia�
bility of the methodology� Lastly� the certi�cation must
be done only once independently how many times the
code is used�

We have also shown a way to use standard veri�ca�
tion techniques to check type safety at the assembly�
language level� This is important for certifying exten�
sions to safe programming languages and as a main
building block in constructing certifying compilers�
Similar techniques have been applied to assembly lan�

��

guage before ��� �
 but neither as a basis for creating
safety proofs nor for checking type safety�

We show an encoding of safety proofs as �rst�order
logic derivations in LF� Our contribution in this area
is to identify a fragment of LF which is both su	cient
for many applications of PCC and also admits a simple
and fast type�checking algorithm�

Proof�carrying code is an application of ideas from
program veri�cation� logic and type theory� in this case
to extend to low�level languages safety properties that
are normally enjoyed only by high�level languages� We
have shown that this technique is useful both for safe
interoperability of programming languages and operat�
ing system components� With the growth of interest
in highly distributed computing� web computing� and
extensible kernels� it seems clear to us that ideas from
programming languages are destined to become increas�
ingly critical for robust and good�performing systems�

 Acknowledgments

This paper is an outgrowth of work done jointly with
Peter Lee� who also suggested numerous improvements
of the presentation� I also thank Robert Harper who
made valuable comments on earlier drafts�

References

��
 Bershad� B�� Savage� S�� Pardyak� P�� Sirer�
E� G�� Becker� D�� Fiuczynski� M�� Cham�

bers� C�� and Eggers� S� Extensibility� safety
and performance in the SPIN operating system� In
Symposium on Operating System Principles �Dec�
������ pp� ���!����

��
 Boyer� R� S�� and Yu� Y� Automated proofs
of object code for a widely used microprocessor�
J� ACM ��� � �Jan� ������ ���!����

��
 Clutterbuck� D�� and Carr�e� B� The veri�ca�
tion of low�level code� IEEE Software Engineering
Journal �� � �May ������ ��!����

��
 Floyd� R� W� Assigning meanings to programs�
In Mathematical Aspects of Computer Science�
J� T� Schwartz� Ed� American Mathematical So�
ciety� ����� pp� ��!���

��
 Harper� R�� Honsell� F�� and Plotkin� G�

A framework for de�ning logics� Journal of the
Association for Computing Machinery ��� � �Jan�
������ ���!����

��
 McCanne� S�� and Jacobson� V� The BSD
packet �lter� A new architecture for user�level

packet capture� In The Winter 	

� USENIX Con�
ference �Jan� ������ USENIX Association� pp� ���!
����

��
 Miller� D�� Nadathur� G�� Pfenning� F�� and

Scedrov� A� Uniform proofs as a foundation for
logic programming� Annals of Pure and Applied
Logic �	 ������� ���!����

��
 Milner� R�� Tofte� M�� and Harper� R� The
De�nition of Standard ML� MIT Press� Cambridge�
Massachusetts� �����

��
 Mogul� J� C�� Rashid� R� F�� and Accetta�

M� J� The packet �lter� An e	cient mechanism for
user�level network code� In ACM Symposium on
Operating Systems Principles �Nov� ������ ACM
Press� pp� ��!��� An updated version is available
as DEC WRL Research Report ��"��

���
 Necula� G� C�� and Lee� P� Proof�carrying
code� Technical Report CMU�CS�������� Com�
puter Science Department� Carnegie Mellon Uni�
versity� Sept� ����� Also appeared as FOX memo�
randum CMU�CS�FOX�������

���
 Necula� G� C�� and Lee� P� Safe kernel exten�
sions without run�time checking� In Second Sympo�
sium on Operating Systems Design and Implemen�
tations �Oct� ������ Usenix�

���
 Pfenning� F� Elf� A language for logic de�nition
and veri�ed meta�programming� In Fourth Annual
Symposium on Logic in Computer Science �Paci�c
Grove� California� June ������ IEEE Computer So�
ciety Press� pp� ���!����

���
 Rouaix� F� A Web navigator with applets in
Caml� Proceedings of the �th International World
Wide Web Conference� in Computer Networks and
Telecommunications Networking �
� �!�� �May
������ ����!�����

���
 Sites� R� L� Alpha Architecture Reference Man�
ual� Digital Press� �����

���
 Tarditi� D�� Morrisett� J� G�� Cheng� P��

Stone� C�� Harper� R�� and Lee� P� TIL�
A type�directed optimizing compiler for ML� In
PLDI�
� Conference on Programming Language
Design and Implementation �May ������ pp� ���!
����

���
 Wahbe� R�� Lucco� S�� Anderson� T� E�� and

Graham� S� L� E	cient software�based fault iso�
lation� In 	�th ACM Symposium on Operating Sys�
tems Principles �Dec� ������ ACM� pp� ���!����

��

��� pc��

����������
���������

��
 �rs � op�rd
� pc � ��� if �pc � ADDQ rs� op� rd

��
 �sel�rm� rs � n��rd
� pc � ��� if �pc � LDQ rd� n�rs� and rm � rs � n � addr

��� pc � n� ��� if �pc � BEQ rs� n and rs � �

��� pc � ��� if �pc � BEQ rs� n and rs �� �

��� pc � ��� if �pc � INV I

Figure �� The abstract machine for the soundness proof�

A Soundness of the VC�based Certi�ca�

tion

In this appendix we prove that the VC predicate as
de�ned in the body of the paper is indeed su	cient to
ensure compliance with the safety policy� In the context
of our example� this means that every memory read
operation references a readable address�as de�ned by
the typing rules�and also that upon termination� the
postcondition holds� This soundness proof can be easily
extended to other examples�

In order to formalize the soundness property� we de�
�ne an abstract machine that de�nes safety formally�
The state of the machine consists of the value of the
program counter �pc� and the state of the machine reg�
isters� including the pseudo register rm�

We view the current state of registers as a substitu�
tion ��� from register names to values� We write ��ri�
to denote the value of the register ri in state �� We
write ��e� and ��P � to express substitution of register
names with their values in state �� We write �
 �e�ri

for the state obtained after executing the assignment
ri �� e in state �� By de�nition� a state � satis�es a
predicate P if and only if � ��P ��

With this notation� we de�ne the abstract machine
by the set of state transition rules shown in Figure ��
There are several interesting aspects of this abstract
machine de�nition� Firstly� the machine speci�es ex�
plicit safety conditions� shown boxed in Figure �� For
example� the safety condition for the memory read rule�
rm � rs � n � addr� is satis�ed in the current state �
if � ��rm� � ��rs� � n � addr� This assumes that the
application�speci�c extension of predicate logic �the set
inference rules in Figure � for our example� is sound
with respect to the given safety policy�

Secondly� this machine does not return errors ex�
plicitly� Instead the execution halts�due to the lack of
appropriate rules�in cases when the safety conditions
are not satis�ed or invalid instructions are encountered�
Lastly� the machine ignores the invariant instructions�
This is appropriate because a physical machine does not
know how to execute them� Therefore� if we ignore the
boxed safety condition in the memory read rule� we ob�

tain a faithful abstraction of the DEC Alpha processor�
We show in the rest of this appendix that a valid VC
predicate for a program guarantees that� at any moment
during its execution� the safety conditions are satis�ed�
or equivalently� the execution does not halt� Such a
program has the same e�ect if executed on the physical
machine� which does not perform the safety checks�

The central result in this appendix is the progress
lemma� Informally� this lemma says that if the current
state satis�es the VC predicate for the current instruc�
tion then either the execution terminates immediately
in a state the satis�es the postcondition� or else there is
a subsequent state �the execution does not halt there��

Lemma A�� �Progress� For any program � such
that �� � INV Pre� if � VC ��� Inv �Post� and
� ��VC pc� then either�

� �pc � RET � and � ��Post�� or

� Exists a new state �� such that ��� pc� � ���� pc��
and � ���VC pc���

Proof� The proof is by case analysis of the current in�
struction�
Case� �pc � RET� Because � ��VC pc� and VC pc �
Post � we conclude that � ��Post��
Case� �pc � ADD rs� op� rd� From hypothesis � ���rs �
n�rd
VC pc���� By simple substitution manipulation we
get that � ��
 �rs � n�rd
��VC pc���� The conclusion
follows immediately if we pick pc� � pc � � and �� �
�
 �rs � n�rd
�
Case� �pc � LD rd� n�rs�� From hypothesis � ��rm �
rs � n � addr � �sel�rm� rs � n��rd
VC pc����
From here� using the conjunction elimination rules� it
follows that � ��rm � rs � n � addr�� which means
that the side condition in the memory read rule of the
abstract machine is satis�ed� If we pick pc� � pc�� and
�� � �
 �sel�rm� rs�n��rd
 we deduce that � �

��VC pc���
Case� �pc � BEQ rs� n� We distinguish two cases
depending on the value of ��rs�� We only show here the
case when � ��rs �� ��� The other case is similar� From
the hypothesis we get � ��rs � � � VC pc�� � rs �� � �
VC pc�n���� Using conjunction and then implication

��

elimination we get that � ��VC pc�n���� which is exactly
what we have to prove�
Case� �pc � INV I� From the hypothesis we have that
� ��I�� Now we use the validity of the VC predicate� By
universal quanti�cation elimination �with the instantia�
tion �� and conjunction elimination on the proof of the
VC predicate we get that � ��I � VC pc���� Now using
implication elimination we get the desired conclusion�

�

Lemma A�� For any program �� set of invariants Inv�
and postcondition Post such that �� � INV Pre� if
� VC ��� Inv �Post� and the initial state �� satis�es the
precondition Pre� then for any subsequent state � of the
abstract machine such that ���� �� �

� ��� pc�� we have
that � ��VC pc��

Proof� By induction on the length of the derivation
���� �� �

� ��� pc�� The base case follows immediately
from the hypothesis observing that VC � � Pre� The
inductive case is Lemma A���

�

Lemmas A�� and A�� can be easily used to show
that at any point during the execution of a program
with a valid VC predicate� the safety check in the mem�
ory load rule is satis�ed� and furthermore whenever the
program terminates� it does so in a state that satis�es
the postcondition� This proves Theorem ��� from the
main body of the paper�

B Adequacy of the LF Representation of

Proofs

In this appendix we introduce LF�� a fragment of full
LF as de�ned in ��
� The bene�ts of using LF� instead
of full LF for proof representation and validation is that
LF� admits a simpler type�checking algorithm�

When using LF for checking proofs� the signature
and the kinds involved can be trusted� as they are de�
signed by the code consumer� This eliminates the need
for type checking kinds in LF� � Also there are no de�
pendent kinds allowed in LF� � Another distinguishing
feature of LF� is that it only allows second�order con�
stants and �rst�order abstractions� This is enough for
representing a wide array of �rst�order and higher�order
logics ��
� The bene�t gained is that the normalization
judgment is syntax directed and admits simple and ef�
�cient implementations�

Finally� by examination of the LF encoding func�
tions we notice that only LF objects in canonical form
are produced� This is in fact a crucial technical detail in
the proofs of adequacy in ��
� In LF� we de�ne typing
judgments only for objects in canonical form� thus sim�
plifying the typing rules and the adequacy proofs� An

object is in canonical form if it is in �	!long�normal�
form� We write �

�
M �c A if the object M is in

canonical form of type A with respect to the type as�
signment and the LF� signature #� This judgment
is de�ned in Figure � in terms of the atomic typing
judgment �

�
M �a A� An object is atomic if it is

a constant or a variable applied to zero or more argu�
ments� Enough arguments must be present such that
the application has a non�functional �atomic� type�

One variation from typical presentations of LF is
that instead of a de�nitional equivalence judgment we
use a normalization judgment� Furthermore� use of nor�
malization is localized to the at app rule� This makes
both the canonical and atomic typing judgments syntax
directed� which simpli�es the adequacy proofs below�

Abstractions are restricted to �rst order by the
can pi rule� because an atomic type cannot be func�
tional� This in turn� justi�es the syntax�directed form
of the normalization judgment� In particular� in the
nm beta rule� the term �N ��x
M � is known to be in
canonical form if M � is canonical and N � has an atomic
type�

The following theorem relates the typing judgments
of LF� with the typing judgment in LF and justi�es the
claim that LF� is a fragment of LF�

Theorem B�� �Soundness of LF� �

	� If �
�
M �c A then �

�
M �LF A�

�� If �
�
M �a A then �

�
M �LF A�

�� If �
�
A �a K then �

�
A �LF K�

�� If �
�
A �LF Type and A � A� then A �LF A� and

 �
�
A� �LF Type�

�� If �
�
M �LF A and M �M � then M �LF M � and

 �
�
M � �LF A�

Proof� The proof is by simultaneous induction on the
structure of LF� derivations�

�

We state below the adequacy theorems for expres�
sion� predicate and derivation representation as de�ned
by the signature L� The proofs for the adequacy theo�
rems follow closely the model of similar adequacy the�
orems in ��
 and can be found in ���
� Technically�
the proofs are somewhat simpler for LF� because of
the syntax�directed form of the typing judgments and
canonical forms� If we extend the signature of �rst�
order predicate logic with �rst�order proof constants�
the adequacy still holds� This means that LF is an ad�
equate representation not only for �rst�order predicate
logic but for all �rst�order extensions of it�

��

Canonical Objects

 � x �a A �
�
M �c B �

�
A �a Type

 �
�
�x �A�M �c �x �A�B

can pi

 �
�
M �a A �

�
A �a Type

 �
�
M �c A

can at

Atomic Objects

 �x� � A
 �

�
x �a A

at var
#�c� � A
 �

�
c �a A

at ct
 �

�
M �a �x �A�B �

�
N �c A �N�x
B � B�

 �
�
M N �a B

�
at app

Atomic Types

#�a� � K
 �

�
a �a K

t a
 �

�
A �a B � K �

�
M �c B

 �
�
A M �a K

t pi

Normalization

a � a
na a

A � A� M �M �

A M � A� M �
na app

A � A� B � B�

�x �A�B � �x �A��B�
na pi

x � x
nm var

c � c
nm c

M �M � N � N �

M N �M � N �
nm app

M � �x �A�M � N � N �

M N � �N ��x
M �
nm beta

Figure �� Typing rules for LF�

Theorem B�� �Adequacy of Expression Repre�
sentation�� There is a compositional bijection p	q be�
tween expressions e with free variables among x�� � � � � xn
and atomic LF objects peq such that x� �a exp� � � � � xn �a
exp �

L
peq �a exp� The bijection is compositional in the

sense that p�e��x
e�q � �pe�q�x
pe�q�

Theorem B�� �Adequacy of Predicate Represen�
tation�� There is a compositional bijection p	q between
predicates P with free variables among x�� � � � � xn and
canonical LF objects pPq such that x� �a exp� � � � � xn �a
exp �

L
pPq �c pred� The bijection is compositional in

the sense that p�e�x
Pq � �peq�x
pPq�

Theorem B�	 �Adequacy of Derivation Repre�
sentation�� There is a bijection p	q between deriva�
tions D �� � P with parameters vi �i � �� � � � � n� and
from hypotheses uj �� � Pj �j � �� � � � �m� and canonical
LF objects pDq such that vi �a exp� uj �a pf pPjq �

L

pDq �c pf pPq�

The adequacy of derivation representation is the cen�
tral result that justi�es the use of LF� type checking as
a su	cient procedure for checking validity of proofs�
This is stated formally in the following corollary�

Corollary B�
 If P is a closed predicate and M is a
canonical LF object such that 	 �

L
M �c pf pPq� then

there exists a derivation D �� � P � that is P is valid�
Furthermore� M � pDq�

��

