
Introduction to Rendering
CS 418: Interactive Computer Graphics

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Eric Shaffer

Computer Graphics is Used By…

• Video Game Industry
• Revenue of $100B globally in 2017

Computer Graphics is Used By…

• Medical Imaging and Scientific Visualization
• Imaging one of the biggest advances in medicine
• Sci Vis allows people to see previously hidden phenomena

Computer Graphics is Used By…

• Computer Aided Design
• Engineering, Architecture, the Maker movement

Computer Graphics is Used By…

• Movie Industry
• Production computer graphics…non-interactive (CS 419)

Although…Production CG is Changing…

Why would this be useful
when making a movie?

Why is the speedup in
producing the scene greater
than just the one time
speedup of real-time over
production?

3D Graphics: Image Formation
• Goal in CG (usually)is to generate a 2D image of a 3D scene…

• The input data is a scene description
• Output is an image

• One approach is to computationally mimic a camera or human eye

• In the scene…there are objects…lights…and a viewer

Sky
Rayleigh scattering

by wavelength

23%

5%
Clorophyll

Absorption by
wavelength

“White”
Solar

Radiation

Yellow
“Sunlight”

Green
Foliage

Sun

Eye

Red Cone Response

Green Cone Response

Blue Cone Response

“Chlorophyll”

Light is EM radiation

Usually multiple
wavelengths
mixed together in a
power spectrum

The spectrum sensed
by our eyes gets
modified multiple
times.

Human perception of
color relies on 3
different cell types
that sense different
regions of the
spectrum

Synthetic Camera Model
How can we computationally mimic a camera?
What specific data would you need?
What specific computations would you perform?

Polygonal Models
Our digital representation of a
scene will primarily use polygonal
models

Pixel Discretization

• Rendering or image
synthesis is the
automatic process of
generating a
photorealistic or non-
photorealistic image
from a 2D or 3D mode

l

• Rendering methods
generally use one of two
approaches

• Rasterization
(focus of CS 418)

• Ray Tracing
(focus of CS 419)

• Though, sometimes
you can use both….

• …and the are other
methods like radiosity

By Gilles Tran -
http://www.oyonale.com/modeles.php?lan

http://www.oyonale.com/modeles.php?lan

Rasterization versus Ray Tracing
• To oversimplify….
• In rasterization, geometric

primitives are projected
onto an image plane and
the rasterizer figures out
which pixels get filled.

• In ray-tracing, we model
the physical transport of
light by shooting a
sampling ray though each
pixel in an image plane and
seeing what the ray hits in
the scene

1
4

Ray Tracing

Follow ray of light….

Can trace from an
eyepoint through a
pixel

See what object the ray
hits…

How would you check
to see if the object is
lit?

Rasterization
For each primitive:

Compute illumination
Project to image plane
Fill in pixels

Global versus
Local Illumination
For true photo-realism:

We cannot compute color or shade
of each object independently

Why?

7

Some objects are blocked from light

Light can reflect from object to object

Some objects might be translucent

Can rasterization produce global lighting effects?

Can ray tracing?

The big advantage of rasterization is…?

1
8

Rasterization Engines

• Most low-level graphics libraries use a camera model

• API typically requires you to specify
• Objects in the scene
• Materials the objects are made of
• Viewer (position, view direction, field of view,…)
• Lights - what parameters do you think typically are used?

• The engine (i.e. the library) will use pipeline-style processing
• The input geometry flows through several processing stages

API = Application Programming Interface

Definitions: Pixel and Raster
A pixel is the smallest controllable picture element in an image

A raster is a grid of pixel values

Typically rectangular grid of color values

(1.0, 0.0, 0.0), (0.0, 0.0, 1.0)

(0.0, 0.0, 1.0), (1.0, 0.0, 0.0)

RGB Color Representation
A color is a triple (R,G,B) representing a mix of red, green, and blue light.
Each color channel has a value in [0, 1] indicating how much light is emitted.

Rasterization

20

Vertices

Pixels

Aliasing

Primitives

Generate a raster image
from a vector description

Vector Graphics Representation
Is a purely mathematical representation of shape. For example, a line is y=mx+b.
Typically, vector graphics refers to 2D shapes, but the idea applies to 3D as well.

3D Graphics Pipeline
Vertex

Processing
Fragment
ProcessingRasterization

Fragments
Are like pixels…but they aren’t necessarily the finalized pixels you see in an image.
Each fragment has a 2D location in a raster and a color.
Final pixel value is typically found by applying hidden surface removal and possibly
compositing to a set of fragments.

Rasterization is a Pipeline
• Data for objects in the

scene usually in the
form of polygonal
meshes

• Most of the work to
render an image is done
on the Graphics
Processing Unit (GPU)

• GPU code will have at
least two parts

• Vertex Shader
• Fragment Shader

2
3

Vertex Shader
• Program that runs on the GPU

• Typically transforms vertex locations from one coordinate system to another
• Transformations can be useful for placing objects in your scene
• Also, some operations on the geometry are easier when done in specific coordinate system

• Change of coordinates usually equivalent to a matrix transformation

• Vertex processor can also computes vertex colors

Changing Coordinate Systems
Model Transformation:
Move a model from a local
coordinate system to a
position in the “world”

View Transformation:
Keeping camera fixed, move
all the objects in the world so
that they are seen as if from a
specific viewpoint

Projection Transformation:
Change coordinates so that a
3D to 2D projection of the
geometry is done correctly

Viewport Transformation:
Change from 2D coordinates
in [-1,1] to pixel coordinates

2
5

Pipeline Step: Primitive Assembly
Vertices must be collected into

geometric objects before
clipping and rasterization can
take place

• For WebGL:
Points, Line Segments, Polygons

• Other APIs sometimes support
more complex geometry (e.g.
curves)

2
6

Pipeline Step: Clipping
• Our virtual camera can only see part of the world

• Objects not within this volume are said to be clipped out of the scene

• Why would we do this?
Why not just render everything and keep only pixels that fall within the viewing window?

2
7

Rasterization
• If an object is not clipped out,

pixels in the frame buffer must be assigned colors

• Rasterizer produces a set of fragments for each object

• Fragments are “potential pixels”
• Have a location in frame buffer
• Color and depth attributes

• Vertex attributes are interpolated across frgaments

2
8

Pipeline Step: Fragment Processing

• Fragment shader computes color of the fragment

• Fragments are processed to determine the color of final pixel
• Fragments at same location may need to be composited

• Is a fragment blocked by other fragments closer to the camera?
• Hidden-surface removal

The WebGL Rasterization Engine
• WebGL relatively new (2011) 3D graphics support for web

• WebGL advantages
• runs in browser
• naturally cross-platform
• don’t need to obtain/build other libraries
• gives you “windowing” for free
• easy to publish/share your stuff

• Disadvantages
• Depends on how you feel about JavaScript
• Performance can be tricky

Programming Language for CS 418

• HTML

• JavaScript

• WebGL

• WebGL version of the GLSL shading language (runs on GPU)

• Chrome as default browser

• Chrome DevTools to debug code

• If you have a laptop, bring it to recitation section

• Some WebGL examples: https://www.chromeexperiments.com/webgl

JavaScript

• We will provide
example code

• You are responsible for
learning what you need
to complete the
assignments

• Mozilla
reference/tutorials are
quite good

https://developer.mozilla.org/en-US/docs/Web/JavaScript

What is WebGL?
Let’s start with a word about OpenGL
• Open standard for 3D graphics programming

• Developed by Silicon Graphics in 1992
• Available on most platforms…
• Bindings available for lots of languages…
• It’s low level

• “Windowing” typically requires another library
• e.g. GLUT

• Version 3.0 (2008) introduced programmable shaders
• Deprecated fixed-function pipeline

• Vulkan API is the successor technology (still pretty new…2016ish)

WebGL is not exactly OpenGL

Figure from WebGL Programming Guide: Interactive 3D Graphics Programming with WebGL by Matsuda and Lea

WebGL Application Structure

Your application will generally just have HTML and JavaScript files

Figure from WebGL Programming Guide: Interactive 3D Graphics Programming with WebGL by Matsuda and Lea

WebGL and GLSL

• WebGL requires you provide shader programs
• GLSL OpenGL Shading Language

• C-like with
• Matrix and vector types (2, 3, 4 dimensional)

• Overloaded operators

• C++ like constructors

• Similar to NVIDIA’s Cg and Microsoft HLSL

• Code sent to shaders as source code

• WebGL functions compile, link and get information to shaders

3
5

Shaders
• Shader source code will be in the HTML file or a JS file…usually

• Vertex Shaders generally move vertices around
• Projection, animation, etc.

• Assign a value to the built-in variable gl_Position

• Fragment Shaders generally determine a fragment color
• Assign a value to the built-in variable gl_Position

3
7

Simple Vertex Shader

attribute vec4 vPosition;
void main(void)
{

gl_Position = vPosition;
}

Slide adapted from
Angel and Shreiner: Interactive Computer Graphics

7E © Addison-Wesley 2015

What a Vertex Shader Does…

Taken from webglfundamentals.org

Can you guess what is slightly incorrect about this animation?

3
9

Simple Fragment Program
precision mediump float;
void main(void)
{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

What a Fragment Shader Does…

Processing on a GPU

The Graphics Processing Unit (GPU) will
have a large number of cores.

This architecture supports a massively-
threaded environment for processing
vertices and fragments (think of
fragments as pixels for now)

Image from
http://antongerdelan.net/opengl/shaders.html

Shading

per vertex shading per fragment shading

• Shading The process of generating a color using lighting and material information

• You can do this in either vertex shader or the fragment shader

• Why does per-fragment shading look more realistic?

What Should You Know?

• General principles of rasterization

• Pipeline model of a rasterization engine

• What a vertex shader does

• What a fragment shader does

• Difference between rasterization and ray-tracing

CS 418…About the Course

• Interactive Computer Graphics

• Focus on algorithms and techniques used in rasterization
• Rasterization is fast enough for real-time complex 3D rendering

• The course will teach you how to use WebGL
• Web-based rasterization engine
• Similar features to many other technologies

(e.g. OpenGL, Vulkan, D3D)

• We will also cover fundamental graphics algorithms
• Things like line drawing that reside inside the WebGL library

Things you would not use WebGL for..
• Making a Game

• Typically would use a game engine like
Unity or Unreal

• Making a Movie
• Renderman

• 3D Web App Development
• three.js which is built on WebGL

But to use three.js you need to understand WebGL

And, basic CG concepts need to be understood to use
Unity or Renderman as well…

Class Mechanics

• Course Website:
https://courses.engr.illinois.edu/cs418/index.html

• Schedule, lecture materials, assignments

• Piazza: This term we will be using Piazza for class
discussions
https://piazza.com/illinois/spring2018/cs418/home.

• Grades available on Compass

https://courses.engr.illinois.edu/cs519/index.html
https://piazza.com/illinois/spring2018/cs418/home

Class Mechanics: Grades

• Machine Problem 1 15%

• Machine Problem 2 15%

• Machine Problem 3 15%

• Machine Problem 4 10%

• Exam 1 15%

• Exam 2 15%

• Exam 3 15%

• No Final Exam

Grading Scale
• Grades probably on usual scale:

• 97 to 93: A
• 93 to 90: A-
• 90 to 87: B+
• 87 to 83: B
• 83 to 80: B-
• …etc.

• I may adjust the intervals down…but not up

• Extra Credit: Show up for class.

I’ll take attendance in some manner 3 times randomly
Each of those 3 classes is worth 0.5% of the total course grade

Course Policies
• MPs submitted after the due date lose 10% per day

• Discussing code is fine, copying code is not…
If we discover plagiarized code, that code will receive a grade of 0

• Do not use 3rd party code or copy and paste code you find randomly on the web

Just to be clear:

Type the code yourself.
If you are using existing code as reference, change it up when you type it
(e.g. change the kind of loop used, what colors are used, etc.)

• In exceptional circumstances where extension may be reasonable
(illness, family emergency etc.) arrangement must be made with the instructor
e-mail: shaffer1@illinois.edu

• Exams are in the Computer-Based Testing Facility (CBTF)

• Post technical questions to Piazza

Do not post your code visible to other students (why?)

Do not expect us to debug your code (we will try to help….)

Class Mechanics: No Book
• We’ll post notes online

• It will save you $150

Language References and Resources
• JavaScript/HTML/CSS:

https://developer.mozilla.org/en-US/docs/Web/JavaScript

• WebGL Specification:
https://www.khronos.org/webgl/

• WebGL Tutorial:
http://webglfundamentals.org/

• Suggested Editors: Brackets, LightTable

• Chrome DevTools Overview: https://developer.chrome.com/devtools

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.khronos.org/webgl/
http://webglfundamentals.org/
https://developer.chrome.com/devtools

Suggested Books

Interactive Computer Graphics: A Top-Down Approach
with WebGL (7th Edition)
Mar 10, 2014
by Edward Angel and Dave Shreiner

Suggested Books

WebGL Programming Guide: Interactive 3D Graphics
Programming with WebGL (OpenGL)Jul 19, 2013
by Kouichi Matsuda and Rodger Lea

Suggested Books

Professional WebGL Programming: Developing 3D
Graphics for the Web
May 8, 2012
by Andreas Anyuru

Course Topics
• Real-time generation of 3D computer graphics through rasterization

• Low-level basic algorithms
• Line-drawing
• Hidden surface removal
• Lighting and shading
• Texturing
• Scan conversion

• Using these capabilities in WebGL

• Modeling and viewing transformations

• Geometric modeling

• Animation

For Next Class

• If you have a laptop or your own PC
• Install an editor (e.g. Brackets)
• Install a browser supporting WebGL (e.g. Chrome)
• Verify WebGL runs in that browser on your machine
• https://courses.engr.illinois.edu/cs418/HelloColor.html

• If you don’t have your own computer, try an EWS lab

https://courses.engr.illinois.edu/cs418/HelloColor.html

	Slide Number 1
	Computer Graphics is Used By…
	Computer Graphics is Used By…
	Computer Graphics is Used By…
	Computer Graphics is Used By…
	Although…Production CG is Changing…
	3D Graphics: Image Formation
	Slide Number 8
	Synthetic Camera Model
	Polygonal Models
	Pixel Discretization
	Slide Number 12
	Rasterization versus Ray Tracing
	Ray Tracing
	Rasterization
	Slide Number 16
	Slide Number 17
	Rasterization Engines
	Definitions: Pixel and Raster
	Rasterization
	3D Graphics Pipeline
	Rasterization is a Pipeline
	Vertex Shader
	Changing Coordinate Systems
	Pipeline Step: Primitive Assembly
	Pipeline Step: Clipping
	Rasterization
	Pipeline Step: Fragment Processing
	The WebGL Rasterization Engine
	Programming Language for CS 418
	JavaScript
	What is WebGL?�Let’s start with a word about OpenGL
	WebGL is not exactly OpenGL
	WebGL Application Structure
	WebGL and GLSL
	Shaders
	Simple Vertex Shader
	What a Vertex Shader Does…
	Simple Fragment Program
	What a Fragment Shader Does…
	Processing on a GPU
	Shading
	What Should You Know?
	CS 418…About the Course
	Things you would not use WebGL for..
	Class Mechanics
	Class Mechanics: Grades
	Grading Scale
	Course Policies
	Class Mechanics: No Book
	Suggested Books
	Suggested Books
	Suggested Books
	Course Topics
	For Next Class

