
The Importance of Surface Texture

Objects in the real world have rich, detailed surface textures
• to produce believable scenes, we must replicate this detail
• uniformly colored surfaces only get us so far

Generated with Blue Moon Rendering Tools — www.bmrt.org

How Do We Model Intricate Surface Detail?

Approach #1: Explicit geometric representation
• actual polygons that model all the surface variations
• up to some finest level of detail
• may generate a lot of polygons

Approach #2: Geometry + texture images
• geometry only describes the general shape of the object
• paste an image onto the wall to give the appearance of brick

Often We Use Simple Patterns

Generally useful for skin, bricks, stucco, granite, …

Typically need to repeat texture over the object
• must make sure there are no seams when texture is tiled

Or Given a Model and a Single Texture

Sample model from www.cyberware.com



Wrap the Texture onto the Model

Sample model from www.cyberware.com

Framework for Texture Mapping

The texture itself is just a 2-D raster image
• acquired from reality, hand-painted, or procedurally generated

Establish a correspondence between surface points & texture

When shading a particular surface point
• look up the corresponding pixel in the texture image
• final color of point will be a function of this pixel

Texturing Polygonal Models

Polygonal models are not so easy
• they don’t have a natural 2-D parameterization
• we need to create one

For each vertex, we specify a texture coordinate
• a (u,v) pair that maps that point into the texture image
• a triangle on the surface will be mapped to a triangle in texture
• can interpolate texture coordinates over the triangle
• note that the size of the triangle may be quite different

Texturing and Rasterization

During rasterization, we traverse the pixels of a triangle
• at each pixel we interpolate the correct texture coordinate
• and we retrieve the corresponding texel (texture element)

What do we do with the contents of the texel?
• color — use it to fill in the current pixel
• reflectance — coefficient for illumination equation (e.g., kd)
• transparency — an alpha value
• and many others, some of which we’ll discuss later



OpenGL Texture Modes

Determines how the contents of the texture are interpreted

For RGB images:

GL_MODULATE — multiply together with surface color

GL_BLEND — use as a t value to blend surface color and a 
predetermined color

GL_DECAL and GL_REPLACE — use texture color directly

Texturing with OpenGL

First, turn on texturing — glEnable(GL_TEXTURE_2D)

Next, pass the actual texture image to OpenGL
• glTexImage2D(GL_TEXTURE_2D, level, channels,

width, height, border, format, type, image)
• for now, level=0 and border=0
• channels is usually 3 (RGB)

– with format=GL_RGB and type=GL_UNSIGNED_BYTE

Have lots of options to control texturing behavior
• see glTexEnvf() and glTexParameterf() for details

– texture coordinates clamped to [0,1] or do they wrap around?
– how is the color of the texture applied to the surface?

Minification and Magnification

Minification: 1 pixel covers multiple texels

Magnification: 1 texel covers multiple pixels

Texturing with OpenGL

Here’s an example setup

This configures the texturing system to
• combine (modulate) the texture color with the surface color
• wrap texture coordinates around outside unit square
• linearly average texels when “magnifying” and “minifying”

glEnable(GL_TEXTURE_2D);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexImage2D(GL_TEXTURE_2D, 0, 3, width, height, 0,
GL_RGB, GL_UNSIGNED_BYTE, image);



Texturing with OpenGL

When drawing, just assign texture coordinates to vertices

glBegin(GL_TRIANGLES);
glNormal3fv(n1);
glTexCoord2f(s1, t1);
glVertex3fv(v1);

glNormal3fv(n2);
glTexCoord2f(s2, t2);
glVertex3f(v2);

glNormal3fv(n3);
glTexCoord2f(s3, t3);
glVertex3fv(v3);

glEnd();

Texture Aliasing

Recall the simple texture application method we discussed
• at each pixel we interpolate the correct texture coordinate
• and we retrieve the corresponding texel
• can lead to nasty aliasing

Why is this?

Consider mapping of pixel to texture

• may be mapped to several (fractional) texels
• but we’re only selecting one of them to use in the pixel
• this kind of point sampling results in aliasing

Pixel Texture

Texture Antialiasing

The antidote is to average (filter) all covered texels together
• need to choose appropriate averaging method

Removes objectionable artifacts
• but it’s not magic
• very high frequency details just

get smoothed over completely
(e.g., gray on horizon)

Unfortunately, there’s a significant drawback here
• averaging covered texels can be very expensive
• for every pixel, might have to visit O(n) texels
• this would really hurt rendering performance

Texture Antialiasing

For efficiency, we can use an image pyramid (mip–map)
• base of pyramid is the original image (level = 0)
• level 1 is the image down-sampled by a factor of 2
• level 2 is down-sampled by a factor of 4, and so on
• requires that original dimensions be a power of 2
• and it’s not too big: 4/3 the size of the original image

256x256 128x128 64x64 32x32



Antialiasing with Image Pyramids

Image pyramids let us efficiently average large regions
• each texel in upper levels covers many base texels

– at level k they are the average of 2kx2k texels
• can quickly assemble appropriate texels for averaging

Fortunately, OpenGL can take care of most details
• gluBuild2DMipmaps() — automatically generate

pyramid from base image
• control behavior with glTexParameter()
• OpenGL handles all filtering details during rasterization

Solid Texture

Instead of texture images, we can define texture volumes
• create a 3-D parameterization (u,v,w) for the texture
• map this onto the object
• the easiest parameterization (u,v,w) = (x,y,z)

Turns out to be a powerful technique
• for procedural generation
• more readily applies to implicit surfaces
• and other surfaces without natural

2-D parameterizations

Some Texturing Applications

First, there’s the obvious one: realistic surface detail
• paste a fur, marble, face scan, … on a surface

We can also support illumination precalculation
• suppose we precompute some expensive lighting effects

– soft shadows, indirect light (e.g., radiosity)
• can hard code this lighting into texture maps

Texturing can also be handy for faking objects
• billboards — place image on a polygon which always rotates to 

face the viewer (handy for things like trees)
• sprites used in video games are a similar idea

And texturing is useful for level of detail management
• can decouple resolution of texture from resolution of surface


