
CS 418: Interactive Computer Graphics

Introduction

Eric Shaffer

Computer Graphics is Used By…

 Video Game Industry
 Revenue of $99B globally in 2016

Computer Graphics is Used By…

 Medical Imaging and Scientific Visualization
 Imaging one of the biggest advances in medicine

 Sci Vis allows people to see previously hidden phenomena

Computer Graphics is Used By…

 Computer Aided Design
 Engineering, Architecture, the Maker movement

Computer Graphics is Used By…

 Movie Industry
 Production rendering…non-interactive (CS 419)

Although Real-Time is Getting Closer
to Production Quality

Why would this
be useful when
making a movie?

Why is the
speedup in
producing the
scene greater
than just the
speedup of real-
time over
production?

CS 418

 Interactive Computer Graphics

 Focus on algorithms and techniques used in rasterization
 Rasterization is fast enough for real-time complex 3D rendering

 The course will teach you how to use WebGL
 Web-based rasterization engine

 Similar features to many other technologies
(e.g. OpenGL, Vulkan, D3D)

 We will also cover fundamental graphics algorithms
 Things like line drawing that reside inside the WebGL library

Things you would not use WebGL for..

 Making a Game
 Typically would use a game engine

like Unity or Unreal

 Making a Movie
 Renderman

 3D web app development
 three.js which is built on WebGL

But to use three.js you need to understand WebGL

And, basic CG concepts need to be understood to use Unity or
Renderman as well…

Class Mechanics

 Course Website:
https://courses.engr.illinois.edu/cs418/index.html
 Schedule, lecture materials, assignments

 Piazza: This term we will be using Piazza for class discussions
https://piazza.com/illinois/spring2017/cs418/home.

 Grades available on Compass

 NOTE: No recitation sections this week (8/30)

Class Mechanics: Grades

Machine Problem 1 15%
Machine Problem 2 15%
Machine Problem 3 15%
Machine Problem 4 10%
Exam 1 15%
Exam 2 15%
Exam 3 15%
 No Final Exam

Grading Scale

 Grades probably on usual scale:
 97 to 93: A
 93 to 90: A-
 90 to 87: B+
 87 to 83: B
 83 to 80: B-
 …etc.

 I may adjust the intervals down…but not up

 Extra Credit: Show up for class.
I’ll take attendance in some manner 3 times randomly
Each of those 3 classes is worth 0.5% of the total course grade
 Online students will receive an equivalent opportunity

Course Policies

 MPs submitted after the due date lose 10% per day

 Discussing code is fine, copying code is not…
If we discover plagiarized code, that code will receive a grade of 0

 Do not use 3rd party code or copy and paste code you find randomly on the web

Just to be clear: Type the code yourself. If you are using existing code as reference,
change it up when you type it (e.g. change the kind of loop used, what colors are used, etc.)

 In exceptional circumstances where extension may be reasonable (illness, family emergency
etc.) arrangement must be made with the instructor (e-mail: shaffer1@illinois.edu)

 Exams are in the Computer-Based Testing Facility (CBTF)

 Post technical questions to Piazza

Do not post your code visible to other students (why?)

Do not expect us to debug your code (we will try to help….)

Programming Language

 HTML

 JavaScript

 WebGL

 WebGL version of the GLSL shading language

 Chrome as default browser

 Chrome DevTools to debug code

 If you have a laptop, bring it to recitation section

 Some WebGL examples:
https://www.chromeexperiments.com/webgl

A word about OpenGL

 Open standard for graphics programming

 Developed by Silicon Graphics in 1992

 Available on most platforms…

 Bindings available for lots of languages…

 It’s low level

 “Windowing” typically requires another library
 e.g. GLUT

 Version 3.0 (2008) introduced programmable shaders
 Deprecated fixed-function pipeline

 Vulkan API is the successor technology (still pretty new…2016ish)

WebGL is not exactly OpenGL

Figure from WebGL Programming Guide: Interactive 3D Graphics Programming with WebGL by Matsuda
and Lea

WebGL Application Structure

Your application will generally just have HTML and JavaScript files

Figure from WebGL Programming Guide: Interactive 3D Graphics Programming with WebGL by Matsuda
and Lea

WebGL
 WebGL relatively new (2011) 3D graphics support for web

 WebGL advantages
 runs in browser

 naturally cross-platform

 don’t need to obtain/build other libraries

 gives you “windowing” for free

 easy to publish/share your stuff

 Disadvantages
 Depends on how you feel about JavaScript

 Performance can be tricky

Class Mechanics: No Book

 We’ll post notes online
 It will save you $150

Language References and Resources

 JavaScript/HTML/CSS:
https://developer.mozilla.org/en-US/docs/Web/JavaScript

 WebGL Specification: https://www.khronos.org/webgl/

 WebGL Tutorial: http://webglfundamentals.org/

 Suggested Editors: Brackets, LightTable

 Chrome DevTools Overview:
https://developer.chrome.com/devtools

Suggested Books

Interactive Computer Graphics: A Top-Down
Approach with WebGL (7th Edition)
Mar 10, 2014
by Edward Angel and Dave Shreiner

Suggested Books

WebGL Programming Guide: Interactive 3D
Graphics Programming with WebGL
(OpenGL)Jul 19, 2013
by Kouichi Matsuda and Rodger Lea

Suggested Books

Professional WebGL Programming:
Developing 3D Graphics for the Web
May 8, 2012
by Andreas Anyuru

Course Topics

 Real-time generation of 3D computer graphics through rasterization

 Low-level basic algorithms
 Line-drawing
 Hidden surface removal
 Lighting and shading
 Texturing
 Scan conversion

 Using these capabilities in WebGL

 Modeling and viewing transformations

 Geometric modeling

 Animation

Super Fast 2D Graphics Overview:
Vector Graphics and Raster Graphics

Vector Graphics

 Use an
geometric/algebraic
description of shape

 PostScript, PDF, SVG

 Low memory (display list)

 Easy to specify a line

 Adapts to any display
resolution

Raster Graphics

 Explicitly specifies colors of a
set of pixels

 GIF, JPG, etc.

 High memory (frame buffer)

 Hard to draw line

 Fixed resolution

 Images are made of shapes and colors.

 Two popular ways of encoding those shapes and colors

Definitions: Pixel and Raster

A pixel is the smallest controllable picture element in an image

A raster is a grid of pixel values

Typically rectangular grid of
color values

(255,0,0), (0,0,255)

(0,0,255), (255,0,0)

Rasterization

25

Vertices

Pixels

Fills

Aliasing

Primitives

Generate a raster
image from a vector
description

2D Example SVG:
Canvas Coordinates

Mathematical plotting
coordinates

 Used to define positions of
vertices for graphics
primitives (e.g. triangles)

 Note: Different technologies may
use terminology other than
“canvas coordinates” to refer to
the same idea

(-1,-1) (1,-1)

(1,1)
(-1,1)

Canvas Coordinates

Can redefine corners of
canvas coordinates to
whatever is convenient

Can use graph’s
coordinates for domain
and range, but leave
room for axes and
notation

(-0.125,-0.125) (1.125,-0.125)

(1.125,1.125)(-0.125,1.125)

0 1

1

0

y = x2

y

x

Hierarchical Coordinate Systems

 Create a canvas for entire
visualization
 Extends across area of screen

 Plots coords from (0,0) to (1,1)

 Create a sub-canvas for plotting
data

 Extends from (1/8,1/8) to
(7/8,7/8) of parent canvas

 Plots coords from (0,0) to (1,1)

28

(0,0) (1,0)

(1,1)(0,1)

0 1

1

0

y = x2

y

x

(0,1) (1,1)

(1,0)(0,0)

Screen Coordinates

Physical per-pixel
integer coordinates

Sometimes (0,0) is in
the upper left corner
(e.g. for mouse input)

(0,0) (HRES-1,0)

(HRES-1, VRES-1)(0,VRES-1)

CanvasScreen
Transformation

 Draw primitives in canvas coordinates
 Extending horizontally from l to r

 Extending vertically from b to t

 Primitives are transformed to screen’s pixel
coordinates

 Rasterization fills in transformed outline with pixel
 Positions

 Colors

(l,b) (r,b)

(r,t)(l,t)

(x,y) (x+w-1,y)

(x+w-1,y+h-1)(x,y+h-1)

Working in Screen
Coordinates

 Can use the same coordinates for both
canvas and screen coordinates

 Specify primitives using pixel locations

 Can result in non-scalable resolution
dependent output

(l=x,b=y) (r=x+w-1,b=y)

(r=x+w-1,
t=y+h-1)

(l=x,t=y+h-1)

(x,y) (x+w-1,y)

(x+w-1,y+h-1)(x,y+h-1)

Scalable Vector Graphics

 Format specification for
describing
2-D graphics

 Embedded in HTML with <svg>
tag

<svg width=pw height=ph

viewbox=“x y w h”> … </svg>

 Creates a display region of pw x
ph pixels in screen coordinates

 Creates a drawing canvas w x h
units in canvas coordinates

 Origin always upper-left corner

(0,1) (1,1)

(1,0)(0,0) viewbox = “0 0 1 1”

SVG Drawing

Vertices

Fills

Circle

<!DOCTYPE html>
<html>
<body>
<svg height= 500 width=500 viewbox = "0 0 1 1">

<circle cx = "0.5"
cy = "0.5"
r = "0.25"

stroke-width = "0.01"
stroke = "black"
fill= "blue"/>

</svg>
</body>
</html>

Rectangle

<!DOCTYPE html>
<html>
<body>
<svg height= 500 width=500 viewbox = "0 0 1 1">
<rect x = "0.3"

y = "0.2"
width = "0.4"
height = "0.6"

stroke-width = "0.01"
stroke = "black"
fill= "blue"/>

</svg>
</body>
</html>

Filled Closed Path

<svg height=500 width=500
viewbox=“0 0 1 1”>

<path d = “M 0.2 0.1
L 0.2 0.3
L 0.4 0.3
L 0.4 0.7
L 0.2 0.7
L 0.2 0.9
L 0.8 0.9
L 0.8 0.7
L 0.6 0.7
L 0.6 0.3
L 0.8 0.3
L 0.8 0.1
Z”

fill = “orange”
/>

</svg>

(0,1) (1,1)

(1,0)(0,0)

3
7

3D Graphics: Image Formation

 Typically, goal in CG is to generate a 2D image of a 3D scene…
 The input data is a scene description

 Output is an image

 One approach is to computationally mimic
a camera or human eye

 In the scene…there are objects…lights…and a viewer

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Sky
Rayleigh scattering

by wavelength

23%

5%
Clorophyll

Absorption by
wavelength

“White”
Solar

Radiation

Yellow
“Sunlight”

Green
Foliage

Sun

Eye

Red Cone Response

Green Cone Response

Blue Cone Response

Synthetic Camera Model

Polygonal Models

Pixel Discretization

Rasterization

For each primitive:
Compute illumination
Project to image plane
Fill in pixels

What Should You Know?

 Class mechanics

 Difference between Vector Graphics and Raster Graphics

For Next Class

 If you have a laptop or your own PC
 Install an editor (e.g. Brackets)

 Install a browser supporting WebGL (e.g. Chrome)

 Verify WebGL runs in that browser on your machine

 https://courses.engr.illinois.edu/cs418/HelloColor.html

 If you don’t have your own computer, try an EWS lab

